
TCP

1

1

Computer Networking

TCP

http://duda.imag.fr

Prof. Andrzej Duda
duda@imag.fr

TCP

2

2

Details of the TCP protocol

 More details on TCP
 connection management
 reliable transfer
 interactive traffic
 Nagle algorithm
 silly window syndrome
 RTT estimation and Karn's rule
 fast retransmit
 congestion control

TCP

3

3

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

flag field

The TCP segment consists of header fields and a data field. The MSS limits
the maximum size of a segment's data field. When TCP sends a large file, it
typically breaks the file into chunks of size MSS. As with UDP, the header
includes source and destination por t numbers, that are used for
multiplexing/ demultiplexing data from/to upper layer applications. Also, as
with UDP, the header includes a checksum field. A TCP segment header also
contains the following fields:

¥The 32-bit sequence number field and the 32-bit acknowledgment number
field are used by the TCP sender and receiver in implementing a reliable data-
transfer service, as discussed below.

¥The 16-bit window-size field is used for flow control. We will see shortly that
it is used to indicate the number of bytes that a receiver is willing to accept.

¥The 4-bit length field specifies the length of the TCP header in 32-bit words.
The TCP header can be of variable length due to the TCP options field,
discussed below. (Typically, the options field is empty, so that the length of the
typical TCP header is 20 bytes.)

¥The optional and variable length options field is used when a sender and
receiver negotiate the maximum segment size (MSS) or as a window scaling
factor for use in high-speed networks. A timestamping option is also defined.
See RFC 854 and RFC 1323 for additional details.

¥The flag field contains 6 bits. The ACK bit is used to indicate that the value
carried in the acknowledgment field is valid. The RST, SYN, and FIN bits are
used for connection setup and teardown, as we will discuss at the end of this
section. When the PSH bit is set, this is an indication that the receiver should
pass the data to the upper layer immediately. Finally, the URG bit is used to
indicate that there is data in this segment that the sending-side upper layer
entity has marked as "urgent." The location of the last byte of this urgent data
is indicated by the 16-bit urgent data pointer. TCP must inform the receiving-
side upper-layer entity when urgent data exists and pass it a pointer to the end
of the urgent data. (In practice, the PSH, URG, and pointer to urgent data are
not used. However, we mention these fields for completeness.)

TCP

4

If the application issues a half-close (eg. shutdown(1)) then data can be received in states
FIN_WAIT_1 and FIN_WAIT_2.

ÒTIME-WAIT - represents waiting for enough time to pass to be sure the remote TCP received
the acknowledgment of its connection termination requestÓ (RFC 793). The connection stays in
that state for a time of 2*MSL, where MSL = maximum segment lifetime (typically 2*2 mn).
This also has the effect that the connection cannot be reused during that time.

Entering the FIN_WAIT_2 state on a full close (not on a half-close) causes the FIN_WAIT_2
timer to be set (eg. to 10 mn). If it expires, then it is set again (eg. 75 sec) and if it expires again,
then the connection is closed. This is to avoid connections staying in the half-close state for ever
if the remote end disconnected.

Transitions due to RESET segments except the 2nd case are not shown on the diagram

There is a maximum number of retransmissions allowed for any segment. After R1
retransmissions, reachability tests should be performed by the IP layer. After unsuccessful
tranmission lasting for at least R2 seconds, the connection is aborted. Typically, R1 = 3 and R2 is
a few minutes. R2 can be set by the application and is typically a few minutes. Transitions due to
those timeouts are not shown.
The values are usually set differently for a SYN packet. With BSD TCP, if the connection setup
does not succeed after 75 sec (= connectionEstablishmentTimer), then the connection is aborted.

The diagram does not show looping transitions; for example, from TIME-WAIT state, reception
of a FIN packet causes an ACK to be sent and a loop into the TIME-WAIT state itself.

4

-> SYN:
send SYN ACK

-> SYN:
send SYN ACK

TCP
Finite
State
Machine

CLOSED

LISTEN

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSING

CLOSE_WAIT

LAST_ACK

passive open:

-> ACK:

active open:
send SYN

-> SYN ACK:
send ACK

close:
send FIN

-> ACK:

-> FIN:
send ACK

2 MSL timeout:

-> FIN:
send ACK

close:
send FIN

-> ACK:

1

3-> RST:(1)

2

4SYN_RCVD

SYN_SENT

send data:
send SYN

5

6

7

close or timeout:

89

10

11

12

13

14

15

16
-> FIN ACK:
send ACK17

-> FIN:
send ACK

20

-> ACK:19

18

(1) if previous state was LISTEN

TCP

5

5

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

During the life of a TCP connection, the TCP protocol running in each host
makes transitions through various TCP states. The client TCP begins in the
closed state. The application on the client side initiates a new TCP connection
(by creating a Socket object in our Java examples from Chapter 2). This causes
TCP in the client to send a SYN segment to TCP in the server. After having
sent the SYN segment, the client TCP enters the SYN_SENT state. While in
the SYN_SENT state, the client TCP waits for a segment from the server TCP
that includes an acknowledgment for the client's previous segment as well as
the SYN bit set to 1. Once having received such a segment, the client TCP
enters the ESTABLISHED state. While in the ESTABLISHED state, the TCP
client can send and receive TCP segments containing payload (that is,
application-generated) data. Suppose that the client application decides it
wants to close the connection. (Note that the server could also choose to close
the connection.) This causes the client TCP to send a TCP segment with the
FIN bit set to 1 and to enter the FIN_WAIT_1 state. While in the
FIN_WAIT_1 state, the client TCP waits for a TCP segment from the server
with an acknowledgment. When it receives this segment, the client TCP enters
the FIN_WAIT_2 state. While in the FIN_WAIT_2 state, the client waits for
another segment from the server with the FIN bit set to 1; after receiving this
segment, the client TCP acknowledges the server's segment and enters the
TIME_WAIT state. The TIME_WAIT state lets the TCP client resend the final
acknowledgment in case the ACK is lost. The time spent in the TIME_WAIT
state is implementation-dependent, but typical values are 30 seconds, 1 minute,
and 2 minutes. After the wait, the connection formally closes and all resources
on the client side (including port numbers) are released.

TCP

6

Before data transfer takes place, the TCP connection is opened using SYN packets. The effect is
to synchronize the counters on both sides.

The initial sequence number is a random number.

The connection can be closed in a number of ways. The picture shows a graceful release where
both sides of the connection are closed in turn.

Remember that TCP connections involve only two hosts; routers in between are not involved.

6

TCP Connection Phases

SYN, seq=x
syn_sent

SYN seq=y, ack=x+1

ack=y+1established
established

snc_rcvd

listen

FIN, seq=u

ack=v+1

ack=u+1

FIN seq=v
fin_wait_2

time_wait

close_wait

last_ack

closed

application
active open passive open

application close:

active close
fin_wait_1

Co
nn
ec
ti
on

Se
tu
p

Da
ta
 T
ra
ns
fe
r

Co
nn
ec
ti
on

Re
le
as
e

TCP

7

7

TCP: reliable data transfer

simplified sender, assuming

wait
for

event

wait
for

event

event: data received
from application above

event: timer timeout for
segment with seq # y

event: ACK received,
with ACK # y

create, send segment

retransmit segment

ACK processing

•one way data transfer
•no flow, congestion control

TCP creates a reliable data-transfer service on top of IP's unreliable best-
effort service. TCP's reliable data-transfer service ensures that the data stream
that a process reads out of its TCP receive buffer is uncorrupted, without gaps,
without duplication, and in sequence, that is, the byte stream is exactly the
same byte stream that was sent by the end system on the other side of the
connection. There are three major events related to data transmission/
retransmission at a simplified TCP sender. Let's consider a TCP connection
between host A and B and focus on the data stream being sent from host A to
host B. At the sending host (A), TCP is passed application-layer data, which it
frames into segments and then passes on to IP. The passing of data from the
application to TCP and the subsequent framing and transmission of a segment
is the first important event that the TCP sender must handle. Each time TCP
releases a segment to IP, it starts a timer for that segment. If this timer expires,
an interrupt event is generated at host A. TCP responds to the timeout event,
the second major type of event that the TCP sender must handle, by
retransmitting the segment that caused the timeout. The third major event that
must be handled by the TCP sender is the arrival of an acknowledgment
segment (ACK) from the receiver (more specifically, a segment containing a
valid ACK field value). Here, the sender's TCP must determine whether the
ACK is a first-time ACK for a segment for which the sender has yet to
receive an acknowledgment, or a so-called duplicate ACK that re-
acknowledges a segment for which the sender has already received an earlier
acknowledgment. In the case of the arrival of a first-time ACK, the sender now
knows that all data up to the byte being acknowledged has been received
correctly at the receiver. The sender can thus update its TCP state variable that
tracks the sequence number of the last byte that is known to have been
received correctly and in order at the receiver.

TCP

8

8

TCP:
reliable
data
transfer

00 sendbase = initial_sequence number
01 nextseqnum = initial_sequence number
02
03 loop (forever) {
04 switch(event)
05 event: data received from application above
06 create TCP segment with sequence number nextseqnum
07 start timer for segment nextseqnum
08 pass segment to IP
09 nextseqnum = nextseqnum + length(data)
10 event: timer timeout for segment with sequence number y
11 retransmit segment with sequence number y
12 compute new timeout interval for segment y
13 restart timer for sequence number y
14 event: ACK received, with ACK field value of y
15 if (y > sendbase) { /* cumulative ACK of all data up to y */
16 cancel all timers for segments with sequence numbers < y
17 sendbase = y
18 }
19 else { /* a duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y
21 if (number of duplicate ACKS received for y == 3) {
22 /* TCP fast retransmit */
23 resend segment with sequence number y
24 restart timer for segment y
25 }
26 } /* end of loop forever */

Simplified
TCP
sender

TCP

9

9

TCP ACK generation [RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 200ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

Duplicated ACKs can be used for Fast Retransmission

To understand the sender's response to a duplicate ACK, we must look at why
the receiver sends a duplicate ACK in the first place. The table summarizes the
TCP receiver's ACK generation policy. When a TCP receiver receives a
segment with a sequence number that is larger than the next, expected, in-order
sequence number, it detects a gap in the data stream--that is, a missing
segment. Since TCP does not use negative acknowledgments, the receiver
cannot send an explicit negative acknowledgment back to the sender. Instead,
it simply re-acknowledges (that is, generates a duplicate ACK for) the last in-
order byte of data it has received. If the TCP sender receives three duplicate
ACKs for the same data, it takes this as an indication that the segment
following the segment that has been ACKed three times has been lost. In this
case, TCP performs a fast retransmit, retransmitting the missing segment
before that segment's timer expires.

TCP

10

10

TCP: retransmission scenarios: GBN + SR

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

Se
q=

92
 t

im
eo

ut

time premature timeout,
cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

10
0

ti
m

eo
ut

ACK=120

In the scenario the host A sends one segment to host B. Suppose that this
segment has sequence number 92 and contains 8 bytes of data. After sending
this segment, host A waits for a segment from B with acknowledgment number
100. Although the segment from A is received at B, the acknowledgment from
B to A gets lost. In this case, the timer expires, and host A retransmits the same
segment. Of course, when host B receives the retransmission, it will observe
from the sequence number that the segment contains data that has already been
received. Thus, TCP in host B will discard the bytes in the retransmitted
segment. In the second scenario, host A sends two segments back to back. The
first segment has sequence number 92 and 8 bytes of data, and the second
segment has sequence number 100 and 20 bytes of data. Suppose that both
segments arrive intact at B, and B sends two separate acknowledgments for
each of these segments. The first of these acknowledgments has
acknowledgment number 100; the second has acknowledgment number 120.
Suppose now that neither of the acknowledgments arrive at host A before the
timeout of the first segment. When the timer expires, host A resends the first
segment with sequence number 92. Now, you may ask, does A also resend the
second segment? According to the rules described above, host A resends the
segment only if the timer expires before the arrival of an acknowledgment with
an acknowledgment number of 120 or greater. Thus, if the second
acknowledgment does not get lost and arrives before the timeout of the second
segment, A does not resend the second segment. Note that, even if the
acknowledgment with acknowledgment number 100 was lost, the cumulative
acknowledgment coming with the acknowledgment number 120 would avoid
the retransmission.

TCP

11

11

Example of data transfer - Reno
101:201(100) A 8501 W 14000

(0) A 8501 W 13000

201:251(50) A 8501 W 12000

251:401(150) A 10001 W 12000

×

8001:8501(500) A 101 W 6000

8501:9001(500) A 201 W14247

9001:9501(500) A 201 W 14247

9501:10001(500) A 201 W 14247

8501:9001(500) A 251 W14247

10001:10501(500) A 401 W 14247

reset timers

Retransmission starting from 8501

¥ Go-back-N, but sender retransmits only the first segments

¥ receiver accepts and stores segments out of order (9001 et 9501)

¥ on reception of 8501, data 8501:10001 passed to application

¥ after the reception of 10001, transmission continues

TCP

12

12

Interactive traffic

 Delayed ACK
 ACK et echo in the same segment
 200 ms delay: ACK sent with echo character

character
1 byte

ACK

echo

ACK of echo
echo

echo

character

TCP

13

13

Nagle algorithm

 Sender may only send one small no acknowledged
segment - tinygram (small = smaller than MSS)
 avoid sending small segments on the network - large overhead
 Nagle algorithm can be disabled by application

(TCP_NODELAY socket option):
 X Window

character
1 byte

ACK

2 bytes

charactercharacter

character

2 characters

TCP

14

14

Silly Window syndrome

 Small advertised window

← Ack 0 W 2000
0:1000 → buf = 2000, freebuf = 1000
1000:2000 → freebuf = 0

← Ack 2000 W 0
appl lit 1 octet : freebuf = 1

← Ack 2000 W 1
2000:2001 → freebuf = 0

appl lit 1 octet : freebuf = 1
← Ack 2001 W 1

2001:2002 → freebuf = 0

SWS occurs when a slow receiver cannot read data fast enough, and reads
them in small increments. The window advertisement method of TCP has the
effect of avoiding buffer overflow at the receiver (flow control), however, if no
additional means are taken, it results in a large number of small packets to be
sent, with no benefit to the receiver since anyhow it cannot read them fast
enough. The (new) TCP specification mandates that sender and receiver should
implement SWS avoidance.

SWS avoidance at the receiver simply forces the window to move by large
increments. As data is read from the receive buffer, the upper window edge
could be moved to the right. However, the SWS avoidance algorithm specifies
that this should be done only if the upper window edge can be moved by at
least the value of one full segment, or, if the buffer is small, by F*
receiveBuffer. As a result, there may be a fraction of the buffer (ÒreserveÓ on
the picture) which is not advertized.

SWS avoidance at receiver is sufficient, however TCP senders must also
implement SWS avoidance, in order to cope with receivers that do not comply
with the latest standard. SWS avoidance at sender is in addition to NagleÕs
algorithm (whose objective is to avoid small packets, which otherwise may
occur even if the offered window is large).

The picture ÒSWS Avoidance ExampleÓ also shows a window probe, which
aims at avoiding deadlocks if some acks are lost.

TCP

15

15

Silly Window syndrome
 Sender has a lot of data to send
 Small advertised window forces to send small

segments
 Solution at receiver

 advertise window by large chunks: min (MSS, 1/2
 RcvBuffer size)

 Solution at sender
 delay sending small segments: send at least min (MSS, 1/2

maximum RcvWindow)

Sender side

Data come from the sending application 1 byte at a time

 o send first segment, no matter of which size

 o don't send until:

 + ACK for the outstanding segment arrives

 + there is a half rwnd of data to send

 + full-sized segment (MSS) can be sent

 o Nagle's algorithm may be disabled by application

 (setsockopt(sd, IPPROTO_TCP, TCP_NO_DELAY, ... , ...)) for better

 interactive data exchange.

Receiver side (Clark's algorithm, RFC 0813)

 Application on the receiving side reads date 1 byte at a time

 o don't advertise a larger window until the window can be increased by

 min(MSS, 1/2 the receiver's buffer space)

TCP

16

16

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value - RTO?

 RTO: Retransmission
Timeout

 longer than RTT
 note: RTT will vary

 too short: premature
timeout
 unnecessary

retransmissions
 too long: slow reaction to

segment loss

Q: how to estimate RTT?
 SampleRTT: measured time

from segment transmission
until ACK receipt
 ignore retransmissions,

cumulatively ACKed
segments

 SampleRTT will vary, want
estimated RTT “smoother”
 use several recent

measurements, not just
current SampleRTT

When a host sends a segment into a TCP connection, it starts a timer. If the
timer expires before the host receives an acknowledgment for the data in the
segment, the host retransmits the segment. The time from when the timer is
started until when it expires is called the timeout of the timer. Clearly, the
timeout should be larger than the connection's round-trip time, that is, the time
from when a segment is sent until it is acknowledged. Otherwise, unnecessary
retransmissions would be sent. But the timeout should not be much larger than
the round-trip time; otherwise, when a segment is lost, TCP would not quickly
retransmit the segment, and it would thereby introduce significant data transfer
delays into the application. The sample RTT, denoted SampleRTT, for a
segment is the amount of time from when the segment is sent (that is, passed to
IP) until an acknowledgment for the segment is received. Obviously, the
SampleRTT values will fluctuate from segment to segment due to congestion
in the routers and to the varying load on the end systems. Because of this
fluctuation, any given SampleRTT value may be atypical. In order to estimate
a typical RTT, it is therefore natural to take some sort of average of the
SampleRTT values.

TCP

17

17

TCP Round Trip Time and
Timeout
EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

 Exponential weighted moving average
 influence of given sample decreases exponentially fast
 typical value of x: 0.125

Setting the timeout

 EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

RTO = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
 x*|SampleRTT-EstimatedRTT|

TCP maintains an average, called EstimatedRTT, of the SampleRTT values. Upon receiving an
acknowledgment and obtaining a new SampleRTT, TCP updates EstimatedRTT according to the
following formula:

EstimatedRTT = (1-x) • EstimatedRTT + x • SampleRTT.

The above formula is written in the form of a programming language statement--the new value of
EstimatedRTT is a weighted combination of the previous value of EstimatedRTT and the new
value for SampleRTT. A typical value of x is x = 0.125 (i.e., 1/8). Note that EstimatedRTT is a
weighted average of the SampleRTT values. This weighted average puts more weight on recent samples
than on old samples. The timeout should be set so that a timer expires early (that is, before the delayed
arrival of a segment's ACK) only on rare occasions. It is therefore natural to set the timeout equal to the
EstimatedRTT plus some margin. The margin should be large when there is a lot of fluctuation in the
SampleRTT values; it should be small when there is little fluctuation. TCP uses the following formula:

RTO = EstimatedRTT + 4•Deviation,

where Deviation is an estimate of how much SampleRTT typically deviates from EstimatedRTT

Deviation = (1-x) • Deviation + x•|SampleRTT - EstimatedRTT|

Dynamic RTO calculation (Jacobson)

 Keeps track of RTT variance in addition to smoothed RTT itself.

 version A (Comer, Tannenbaum)

 RTT = a * RTT + (1 - a) * measured_RTT (a = 7/8)

 D = b * D + (1 - b) * |RTT - measured_RTT| (b = 3/4)

 RTO = RTT + 4 * D

Version B (Stevens, Jacobson)

 initialize

 RTT = 0

 D = 3

 RTO = RTT + 2 * D = 0 + 2 * 3 = 6 (for initial SYN)

 RTT = RTT + g * (measured_RTT - RTT) (g = 1/8)

 D = D + h * (|measured_RTT - RTT| - D) (h = 1/4)

 RTO = RTT + 4 * D

TCP

18

18

Karn and Partridge rules

 Do not measure RTT if
retransmission
 is it the ACK for the first

transmission or the second
one?

 Timer exponential backoff
 double RTO at each

retransmission

A1

P1

timeout

P1 again
sampleRTT? sampleRTT?

A1

sampleRTT?

P1

P1 again

(Karn's Algorithm)

 Solution to the retransmission ambiguity problem.

 If (a segment has been retransmitted after a timeout)

 RTO = min(2*RTO, 64 sec)

 RTT and D are not updated

 Don't update RTO until

 - another timeout

 RTO = min(2*RTO, 64 sec) (exponential backoff)

 - ACK for a segment that was not retransmitted

 resume the Jacobson's algorithm

TCP

19

19

Beginning of the connection
 SYN segment timeout
 1st

 D = 3, RTT = 0
 RTO = RTT + 2 * D = 0 + 2 * 3 = 6 s

 2nd
 RTO = RTT + 4 * D = 12s
 apply exp. backoff -> 24 s

 3rd
 apply exp. backoff -> 48 s

 6, 24, 48, then drop
 max. 75 s

 Implementation dependent

TCP

20

20

Data packets
 1st

 RTO = 1.5 s (3 ticks)

 2nd
 apply exp. backoff -> 3 s

 7th
 apply exp. backoff -> 64 s

 nth
 max (64, 2xRTO)

 13th
 drop

 Total time
 542,5s = 9 minutes

TCP

21

21

A Simulation of RTO

-0,31571794 0,3762532 0,41735271

-0,2762532 0,34172155 0,38207783

-0,24172155 0,31150635 0,34698876

0

2

4

6

8

10

12

14

1 14 27 40 53 66 79 92 105 118 131 144

0

2

4

6

8

10

12

14

1 16 31 46 61 76 91 106 121 136

seconds

seconds

Timeout

SampleRTT

Round trip estimation is based on a low pass filter. Originally, the first TCP specification used a
formula similar to estimatedRTT. However, it became apparent that RTT estimates fluctuate a
lot, with fluctuations sometimes meaning a change of path. The formula is based on estimation
of both average and deviation (which is an estimator of the absolute value of the error). The
coefficients 0.125 and 0.25 (the estimation gains) are chosen to be simple negative powers of 2,
which makes implementation of the multiplication simple (a bit shift). The specific values were
tuned based on measured data.

In practice, most OSs do not check timeouts individually, but rather implement a timeout routine
that wakes up periodically. On BSD Unix, such a routine wakes up every 0.5 seconds, which
means that timers are computed witha granualrity of 500 ms.This results in retransmission
timeouts that may occur almost 500 ms after the due time. The same granularity applies to the
RTT estimation.

TCP

22

22

Fast Retransmit

 Fast retransmit
 timeout may be large
 add the Selective Repeat behavior
 if the sender receives 3 dup licated ACKs, retransmit the

missing segment

×

P1 P2 P3 P4 P5 P6 P3 P7

A1 A2 A2 A2 A2 A?

TCP

23

23

Congestion Control

End-end congestion control:
 no explicit feedback from

network
 congestion inferred from end-

system observed loss, delay
 approach taken by TCP

Network-assisted congestion control:
 routers provide feedback to end systems

 single bit indicating congestion
 explicit rate sender should send at

Congestion:
 “too many sources sending too much data too fast for

network to handle”
 manifestations:

 lost packets (buffer overflow at routers)
 long delays (queueing in router buffers)

Two broad approaches towards congestion control:

bottleneck

Packet retransmission treats a symptom of network congestion (the loss of a
specific transport-layer segment, so long delay) but does not treat the cause of
network congestion--too many sources attempting to send data at too high a
rate. There exist two broad approaches that are taken in practice toward
congestion control. We can distinguish among congestion-control approaches
based on whether or not the network layer provides any explicit assistance to
the transport layer for congestion-control purposes:

¥End-end congestion control. In an end-end approach toward congestion
control, the network layer provides no explicit support to the transport layer for
congestion-control purposes. Even the presence of congestion in the network
must be inferred by the end systems based only on observed network
behaviour (for example, packet loss and delay).

¥Network-assisted congestion control. With network-assisted congestion
control, network-layer components (that is, routers) provide explicit feedback
to the sender regarding the congestion state in the network. This feedback may
be as simple as a single bit indicating congestion at a link. This approach was
taken in the early IBM SNA and DEC DECnet architectures, was recently
proposed for TCP/IP networks. Congestion information is typically fed back
from the network to the sender in one of two ways, either as direct feedback
from a network router to the sender (choke packet), or as marked packet
flowing from sender to receiver. Upon receipt of a marked packet, the receiver
then notifies the sender of the congestion indication. Note that this latter form
of notification takes at least a full round-trip time.

TCP

24

24

TCP Congestion Control

 end-end control (no network assistance)
 transmission rate limited by congestion window size,

Congwin, over segments:

 w segments, each with MSS bytes sent in one RTT:

throughput =
w * MSS

RTT
Bytes/sec

Congwin

TCP must use end-to-end congestion control rather than network-assisted congestion control,
since the IP layer provides no explicit feedback to the end systems regarding network
congestion.

A TCP connection controls its transmission rate by limiting its number of transmitted-but-yet-
to-be-acknowledged segments. Let us denote this number of permissible unacknowledged
segments as w, often referred to as the TCP window size. Ideally, TCP connections should be
allowed to transmit as fast as possible (that is, to have as large a number of outstanding
unacknowledged segments as possible) as long as segments are not lost (dropped at routers)
due to congestion. In very broad terms, a TCP connection starts with a small value of w and
then "probes" for the existence of additional unused link bandwidth at the links on its end-to-
end path by increasing w. A TCP connection continues to increase w until a segment loss
occurs (as detected by a timeout or duplicate acknowledgments). When such a loss occurs, the
TCP connection reduces w to a "safe level" and then begins probing again for unused
bandwidth by slowly increasing w.

An important measure of the performance of a TCP connection is its throughput--the rate at
which it transmits data from the sender to the receiver. Clearly, throughput will depend on the
value of w. If a TCP sender transmits all w segments back to back, it must then wait for one
round-trip time (RTT) until it receives acknowledgments for these segments, at which point it
can send w additional segments. If a connection transmits w segments of size MSS bytes every
RTT seconds, then the connection's throughput, or transmission rate, is (w á MSS)/RTT bytes
per second.

Suppose now that K TCP connections are traversing a link of capacity R. Suppose also that
there are no UDP packets flowing over this link, that each TCP connection is transferring a
very large amount of data and that none of these TCP connections traverse any other congested
link. Ideally, the window sizes in the TCP connections traversing this link should be such that
each connection achieves a throughput of R/K. More generally, if a connection passes through
N links, with link n having transmission rate Rn and supporting a total of Kn TCP connections,
then ideally this connection should achieve a rate of Rn/Kn on the nth link. However, this
connection's end-to-end average rate cannot exceed the minimum rate achieved at all of the
links along the end-to-end path. That is, the end-to-end transmission rate for this connection is
r = min{ R1/K1, . . ., RN/KN} . We could think of the goal of TCP as providing this connection
with this end-to-end rate, r.

TCP

25

25

TCP congestion control:

 two “phases”
 slow start
 congestion avoidance

 important variables:
 Congwin
 threshold: defines

threshold between slow
start phase and
congestion avoidance
phase

 “probing” for usable
bandwidth:
 ideally: transmit as fast

as possible (Congwin as
large as possible) without
loss

 increase Congwin until
loss (congestion)

 loss: decrease Congwin,
then begin probing
(increasing) again

The TCP congestion-control mechanism has each side of the connection keep
track of two additional variables: the congestion window and the threshold.
The congestion window, denoted CongWin, imposes an additional constraint
on how much traffic a host can send into a connection. Specifically, the
amount of unacknowledged data that a host can have within a TCP connection
may not exceed the minimum of CongWin and RcvWin. TCP congestion is
composed of two phases:

¥Slow star t: When the congestion window is below the threshold, the
congestion window grows exponentially.

¥Congestion avoidance: When the congestion window is above the threshold,
the congestion window grows linearly.

¥Whenever there is a timeout, the threshold is set to one-half of the current
congestion window and the congestion window is then set to 1.

TCP

26

26

TCP Slowstart

 exponential increase
(per RTT) in window
size (not so slow!)

 loss event: timeout
(Tahoe TCP) and/or or
three duplicate ACKs
(Reno TCP)

initialize: Congwin = 1
for (each ACK)
 Congwin++
until (loss event OR
 CongWin > threshold)

Slowstart algorithm
Host A

one segment

RT
T

Host B

time

two segments

four segments

Slow star t: The congestion window is initialized to one MSS; after one RTT,
the window is increased to two segments; after two round-trip times, the
window is increased to four segments; after three round-trip times, the window
is increased to eight segments, and so forth. (When the congestion window is
below the threshold, the congestion window grows exponentially). This phase
ends when either the congestion window becomes larger than the current value
of threshold or when a segment is lost (Timeout for TCP Tahoe: the
sender side of the application may have to wait a long period of time for the
timeout. Fast retransmit mechanism in TCP Reno: it triggers the transmission
of a dropped segment if three duplicate ACKs for a segment are received
before the occurrence of the segment's timeout. Reno also employs a fast-
recovery mechanism that essentially cancels the slow-start phase after a fast
retransmission.)

TCP

27

27

TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
 every w segments ACKed:
 Congwin++
 }
threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

1

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs

Congestion avoidance: Once the congestion window is larger than the current
value of threshold, the congestion window grows linearly rather than
exponentially. Specifically, if w is the current value of the congestion window,
and w is larger than threshold, then after w acknowledgments have arrived,
TCP replaces w with w + 1. This has the effect of increasing the congestion
window by 1 in each RTT for which an entire window's worth of
acknowledgments arrives. The congestion-avoidance phase continues as long
as the acknowledgments arrive before their corresponding timeouts. But the
window size, and hence the rate at which the TCP sender can send, cannot
increase forever. Eventually, the TCP rate will be such that one of the links
along the path becomes saturated, at which point loss (and a resulting timeout
at the sender) will occur.

When a timeout occurs, the value of threshold is set to half the value of the
current congestion window, and the congestion window is reset to one MSS.
The sender then again grows the congestion window exponentially fast using
the slow-start procedure until the congestion window hits the threshold.

TCP

28

28

TCP Fairness

Fairness goal: if N TCP
sessions share same
bottleneck link, each
should get 1/N of link
capacity

WHY?
 Additive increase gives slope

of 1, as throughout increases
 multiplicative decrease

decreases throughput
proportionally

TCP congestion
avoidance:

 AIMD: additive
increase,
multiplicative
decrease
 increase window by

1 per RTT
 decrease window by

factor of 2 on loss
event

TCP congestion control converges to provide an equal share of a bottleneck
link's bandwidth among competing TCP connections. If we ignore the slow-
start phase, we see that TCP essentially increases its window size by 1 each
RTT (and thus increases its transmission rate by an additive factor) when its
network path is not congested, and decreases its window size by a factor of 2
each RTT when the path is congested. For this reason, TCP is often referred to
as an additive-increase, multiplicative-decrease (AIMD) algorithm.

TCP

29

29

Why is TCP fair?

Two competing sessions:
 Additive increase gives slope of 1, as throughout increases
 multiplicative decrease decreases throughput proportionally

A goal of TCP's congestion-control mechanism is to share a bottleneck link's bandwidth evenly among the
TCP connections that are bottlenecked at that link. But why should TCP's additive-increase,
multiplicative-decrease algorithm achieve that goal, particularly given that different TCP connections may
start at different times and thus may have different window sizes at a given point in time? [Chiu 1989]
provides an elegant and intuitive explanation of why TCP congestion control converges to provide an
equal share of a bottleneck link's bandwidth among competing TCP connections.

Let's consider the simple case of two TCP connections sharing a single link with transmission rate R, as
shown in the figure. We'll assume that the two connections have the same MSS and RTT (so that if they
have the same congestion window size, then they have the same throughput), that they have a large
amount of data to send, and that no other TCP connections or UDP datagrams traverse this shared link.
Also, we'll ignore the slow-start phase of TCP and assume the TCP connections are operating in
congestion-avoidance mode (additive-increase, multiplicative-decrease) at all times.

Suppose that the TCP window sizes are such that at a given point in time, that the amount of link
bandwidth jointly consumed by the two connections is less than R. No loss will occur, and both
connections will increase their window by 1 per RTT as a result of TCP's congestion-avoidance algorithm.
Eventually, the link bandwidth jointly consumed by the two connections will be greater than R and
eventually packet loss will occur. Connections 1 and 2 then decrease their windows by a factor of two.
Suppose the joint bandwidth use is now less than R, the two connections again increase their throughputs.
Eventually, loss will again occur, and the two connections again decrease their window sizes by a factor
of two, and so on. You should convince yourself that the bandwidth realized by the two connections
eventually fluctuates along sharing an equal bandwidth. You should also convince yourself that the two
connections will converge to this behaviour regardless their starting point. Although a number of idealized
assumptions lay behind this scenario, it still provides an intuitive feel for why TCP results in an equal
sharing of bandwidth among connections.

TCP

30

30

router

source 1

source 2 destination

link C

Why AI-MD works?

 Simple scenario with two sources sharing a
bottleneck link of capacity C

TCP

31

31

Throughput of sources

x1

x2
x1 = x2

1

1. Additive increase

2. Multiplicative

decrease

3. Additive increase

4. Multiplicative

decrease

C

C

2
3

4

Starting from any point, the throughput converges to the equal share vector

TCP

32

32

TCP Fairness

congestion avoidance: additive increase

loss: decrease window by factor of 2

TCP

33

33

Fairness of the TCP

 TCP differs from the pure AI-MD principle
 window based control, not rate based
 increase in rate is not strictly additive - window is increased by

1/W for each ACK

 Adaptation algorithm of TCP results in a negative bias
against long round trip times
 adaptation algorithm gives less throughput to sources having

larger RTT

TCP

34

34

Fairness of TCP

 Example network with two TCP sources
 link capacity, delay
 limited queues on the link (8 segments)

 NS simulation

router
destination

10 Mb/s, 20 ms 1 Mb/s 10 ms

10 Mb/s, 60 ms 8 seg. 8 seg.

S1

S2

TCP

35

35

Throughput in time

time

ACK numbers
S1

S2

TCP

36

36

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:
 lost
 delivered out of order to

app
 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment
handled independently of
others

Why is there a UDP?
 no connection establishment

(which can add delay)
 simple: no connection state

at sender, receiver
 small segment header
 no congestion control: UDP

can blast away as fast as
desired

UDP is a vacuous transport protocol, that does just about as little as a transport protocol can
do. In particular, on the sending side, it does not provide much more than taking the messages
from the application process and passing them directly to the network layer; and on the
receiving side, more than taking the messages arriving from the network layer and passing
them directly to the application process. More than this, UDP provides a
multiplexing/demultiplexing service in order to pass data between the network layer and the
correct process. However, aside from the multiplexing/demultiplexing function and some light
error checking, it adds nothing to IP. In fact, if the application developer chooses UDP instead
of TCP, then the application is almost directly talking with IP. UDP takes messages from the
application process, attaches source and destination port number fields for the
multiplexing/demultiplexing service, adds two other small fields, and passes the resulting
segment to the network layer. The network layer encapsulates the segment into an IP datagram
and then makes a best-effort attempt to deliver the segment to the receiving host. If the
segment arrives at the receiving host, UDP uses the port numbers and the IP destination
address to deliver the segment's data to the correct application process. Note that with UDP
there is no handshaking between sending and receiving transport-layer entities before sending
a segment. For this reason, UDP is said to be connectionless.
¥No connection establishment. As we'll discuss later, TCP uses a three-way handshake before
it starts to transfer data. UDP just blasts away without any formal preliminaries. Thus UDP
does not introduce any delay to establish a connection.
¥No connection state. UDP does not maintain connection state (receive and send buffers,
congestion-control parameters, and sequence and acknowledgment number parameters) and
does not track any of these parameters. For this reason, a server devoted to a particular
application can typically support several active clients when the application runs over UDP.
¥Small packet header overhead. The UDP segment has only 8 bytes of header overhead in
every segment.
¥Unregulated send rate. The speed at which UDP sends data is only constrained by the rate at
which the application generates data, the capabilities of the source (CPU, clock rate, and so on)
and the access bandwidth to the Internet. We should keep in mind, however, that the receiving
host does not necessarily receive all the data. When the network is congested, some of the data
could be lost due to router buffer overflow. Thus, the receive rate can be limited by network
congestion even if the sending rate is not constrained.

TCP

37

37

UDP: more

 often used for streaming
multimedia apps
 loss tolerant
 rate sensitive

 other UDP uses
 DNS
 SNMP

 reliable transfer over UDP:
add reliability at
application layer
 application-specific

error recover!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Many important applications run over UDP. UDP is used for RIP routing table updates,
because the updates are sent periodically (typically every five minutes), so that lost updates are
replaced by more recent updates. UDP is used to carry network management (SNMP) data.
UDP is preferred to the more reliable TCP in this case, since network management
applications must often run when the network is in a stressed state--precisely when reliable,
congestion-controlled data transfer is difficult to achieve. Also DNS runs over UDP, thereby
having no connection-establishment delays. UDP is also commonly used today with
multimedia applications, such as Internet phone, real-time video conferencing, and streaming
of stored audio and video. all of these applications can tolerate a small fraction of packet loss,
so that reliable data transfer is not absolutely critical for the success of the application.
Furthermore, real-time applications, like Internet phone and video conferencing, react very
poorly to (TCP's) congestion control. For these reasons, developers of multimedia applications
often choose to run their applications over UDP instead of TCP. Finally, because TCP cannot
be employed with multicast, multicast applications run over UDP. Although commonly done
today, running multimedia applications over UDP is controversial to say the least. In fact, UDP
has no congestion control. But congestion control is needed to prevent the network from
entering a state in which very little useful work is done.

It is possible for an application to have reliable data transfer when using UDP. This can be
done if reliability is built into the application itself (for example, by adding acknowledgment
and retransmission mechanisms, such as those we shall study in the next section).

In the UDP segment structure the application data occupies the data field of the UDP
datagram. The UDP header has only four fields, each consisting of two bytes. The port
numbers allow the destination host to pass the application data to the correct process running
on the destination (that is, the demultiplexing function). The checksum is used by the receiving
host to check if errors have been introduced into the segment. The length field specifies the
length of the UDP segment, including the header, in bytes.

TCP

38

Let us have a closer look at UDP communication.

Two processes (= application programs) pa, and pb, are communicating. Each of them is
associated locally with a port, as shown in the figure.

In addition, every machine (in reality: every communication adapter) has an IP address.

The example shows a packet sent by the name resolver process at host A, to the DNS name
server process at host B. The UDP header contains the source and destination ports. The
destination port number is used to contact the name server process at B; the source port is not
used directly; it will be used in the response from B to A.

The UDP header also contains a checksum the protect the UDP data plus the IP addresses and
packet length. Checksum computation is not performed by all systems.

38

End to end UDP communication

Host
IP addr=B

Host
IP addr=A

IP SA=A DA=B prot=UDP
source port=1267
destination port=53
…data…

process
sa

process
ra

UDP

process
qa

process
pa

TCP

IP

1267

process
sb

process
rb

UDP

process
qb

process
pb

TCP

IP

53

IP network

UDP Source Port UDP Dest Port
UDP Message Length UDP Checksum

data

IP header

UDP datagramIP datagram

TCP

39

39

Sockets

 Interface between applications and the transport layer
protocols
 socket - communication end-point
 network communication viewed as a file descriptor (socket

descriptor)

 Two main types of sockets
 connectionless mode (or datagram, UDP protocol)
 connection mode (or stream, TCP protocol)

The socket library is an application programming interface (API) that provides
access to the transport layer and with some restrictions (raw sockets) to the
network layer.

A socket means a communication end-point. Unix considers a socket as a file.
A socket corresponds to a receive and a send buffer in the operating system
kernel.

A TCP/IP socket is identified by the IP address of a communication interface
and a port number. There are three types of sockets:

¥ UDP sockets: type = datagram; protocol = UDP

¥ TCP sockets: type = stream; protocol = TCP

¥ raw sockets: type = raw; protocol = IP or ICMP

TCP

40

40

Connection mode

 System calls in connection mode (TCP)
 socket - create a socket descriptor
 bind - associate with a local address
 listen - signal willingness to wait for incoming connections (S)
 accept - accept a new incoming connection (S)
 connect - ask to establish a new connection (C)
 send - send a buffer of data
 recv - receive data
 close - close socket descriptor

TCP sockets differ from UDP sockets in a number of ways. Since TCP is
connection oriented, a TCP socket can be used only after a connection
establishment phase. This uses the connect (at client), and listen, and accept
(at server) calls.

On the client side, a connection establishment is requested with connect call.

A TCP server uses at least two sockets. One socket is non-connected and is
used to receive connection requests (``SYN" segments). Once a connection
request is accepted, a new socket is created; this new socket is connected to the
remote end. listen is used to tell the operating system to wait for incoming
connection requests on a socket. accept consumes one connection request (if
any has arrived; otherwise it blocks). It creates a new socket and returns the
socket descriptor.

TCP

41

41

Connection mode

socket();

bind();

connect();

send();

socket();

bind();

listen();

client server

accept();

close();

recv();

close();

connection
establishment

data transfer

TCP

42

42

Connection mode

applicat ion

TCP

I P

Ethernet

id=3 id=4

connection
queue

buffer

port=32456

address=129.88.38.84

address=FE:A1:56:87:98:12

id=5

buffer

TCP

43

43

Connectionless mode

 System calls in connectionless mode (UDP)
 socket - create a socket descriptor
 bind - associate with a local address
 sendto - send a buffer of data
 recvfrom - receive data
 close - close socket descriptor

A program creates a socket with the socket system call. The call returns a
(small) integer (the ``socket descriptor") which can be used later to reference
the socket. The socket descriptor is in the same space as a file descriptor. A
Unix process has at least three open files: 0 (input); 1 (output); 2 (error). A
process that accesses no disk fi le and opens one socket is likely to receive a
socket descriptor 3. File access functions such as read and wr ite can be
performed on sockets too.

When a socket is created with the socket call, it is not yet usable. It must be
associated with a network interface and a port number. This is called
``binding" and is performed with the bind system call.

The function pair sendto(), recvfrom() are used to send data to any
destination, or receive from any source, over one single socket. The remote
system is part of the system call arguments.

TCP

44

44

Connectionless mode

socket();

bind();

sendto();

close();

socket();

bind();

recvfrom();

client server

TCP

45

45

Connectionless mode

id=3 id=4

buffer buffer

port=32456 port=32654

applicat ion

UDP

I P

Ethernet

address=129.88.38.84

address=FE:A1:56:87:98:12

TCP

46

46

Summary
 TCP protocol is complex!

 connection management
 reliable transfer
 interactive traffic, Nagle algorithm
 silly window syndrome
 RTT estimation and Karn's rule
 fast retransmit
 congestion control

 UDP is simple
 adds multiplexing to IP datagrams
 used by RTP/RTCP for multimedia streaming

 Sockets - application interface to network
communication
 connection sockets (TCP)
 connectionless sockets (UDP)

TCP

47

47

Question

 We have observed the following traces
 relay1 -> in1sun1 TCP D=38662 S=9 Ack=399593749

Seq=2756727981 Len=0 Win=24820
 in1sun1 -> relay1 TCP D=9 S=38662 Ack=2756727981

Seq=399613205 Len=1024 Win=24820
 in1sun1 -> relay1 TCP D=9 S=38662 Ack=2756727981

Seq=399614229 Len=1024 Win=24820
 in1sun1 -> relay1 TCP D=9 S=38662 Ack=2756727981

Seq=399615253 Len=1024 Win=24820
 in1sun1 -> relay1 TCP D=9 S=38662 Ack=2756727981

Seq=399616277 Len=1024 Win=24820
 relay1 -> in1sun1 TCP D=38662 S=9 Ack=399595797

Seq=2756727981 Len=0 Win=24820

 We have measured the RTT with relay1 of 158 ms
 What is the throughput shown by netperf?

TCP

48

48

Réponse
 Voici la solution :

 a la reception les donnees sont retirees le plus vite possible (port
discard), donc l'emetteur n'est limite que par la fenetre annonce -
24820 octets. Il peut envoyer alors 24820 octets par RTT. Ca donne
le debit de

 24820 x 8 / 158ms = 1,25 Mb/s qui est proche de 1,139 Mb/s
mesure par netperf dans cette experience.

