

Advanced Computer Networks

QoS in IP networks

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

Contents

- Traffic shaping
 - leaky bucket
 - token bucket
- Scheduling
 - FIFO
 - Fair queueing
 - RED

Traffic shaping and QoS contract

- Guaranteeing QoS
 - if the network knows the type of the traffic, it can reserve resources to support the traffic
- QoS contract between the source and the network
 - source: traffic description leaky bucket, token bucket
 - network: QoS guarantee if the traffic conforms to the description
 - if the traffic is not conformant (leaky bucket, token bucket), penalty: reject a packet, no guarantees of the QoS (traffic policing)

Leaky bucket

- Limited size buffer with constant departure rate
 - R if buffer not empty
 - 0 if buffer empty
- Fixed size packets
 - one packet per clock tick
- Variable size packets
 - number of bytes per clock tick
- Packet loss if buffer filled

Token bucket

Characterizing Burstiness: Token Bucket

- Parameters
 - r average rate, i.e., rate at which tokens fill the bucket
 - b bucket depth (limits size of burst)
 - R maximum link capacity or peak rate
- A bit (packet) can be transmitted only when a token is available

Token bucket

- Tokens generated with rate r
 - 1 token : 1 packet or *k* bytes
- Packet must wait for a token before transmission
 - no losses
 - allows limited bursts (a little bit more than b)
- When packets are not generated, tokens accumulate
 - n tokens burst of n packets
 - if bucket filled, tokens are lost
- Mean departure rate: *r*
- Delay limited by b/r (Little's formulae)

Example

- 25 MB/s link
- Network can support a peak rate R = 25 MB/s, but prefers sustained throughput of r = 2 MB/s
- Data generated
 - 1 MB each second, burst during 40 ms

Example

- 1. leaky bucket with b = 1 MB, R = 25 MB/s, r = 2 MB/s
- 2. token bucket with b = 250 KB, R = 25 MB/s, r = 2 MB/s
- 3. token bucket with b = 500 KB, R = 25 MB/s, r = 2 MB/s
- 4. token bucket with b = 750 KB, R = 25 MB/s, r = 2 MB/s
- 5. token bucket with b = 500 KB, R = 25 MB/s, r = 2 MB/s and leaky bucket with b = 1 MB, R = 10 MB/s

Fig. 5-25. (a) Input to a leaky bucket. (b) Output from a leaky bucket. (c) - (e) Output from a token bucket with capacities of 250KB, 500KB, and 750KB. (f) Output from a 500KB token bucket feeding a 10 MB/sec leaky bucket.

Burst duration

- Burst duration S [s]
- Size of the bucket b bits
- Maximal departure rate R b/s
- Token arrival rate r b/s
 - burst of b + rS bits
 - burst of RS
 - b + rS = RS -> S = b/(R r)
- Example
 - b = 250 KB, R = 25 MB/s, r = 2 MB/s
 - S = 11 ms

QoS Guarantees: Per-hop Reservation

- End-host: specify
 - arrival rate characterized by token bucket with parameters (b, r, R)
 - the maximum tolerable delay D, no losses
- Router: allocate bandwidth r_a , buffer space B_a such that
 - no packet is dropped
 - no packet experiences a delay larger than D

QoS Guarantees: Per-hop Reservation

- Router: if allocated bandwidth $r_a = r$, buffer space B such that
 - no packet is dropped
 - no packet experiences a delay larger than D = b/r

Traffic description

- Flow A : r = 1 MB/s, b = 1 B
- Flow B : r = 1 MB/s, b = 1 MB
 - during 2 s, the flow saves 2 s at 0.5 MB/s = 1 MB

Scheduling strategies

- Scheduler
 - defines the order of packet transmission
- Allocation strategy
 - throughput
 - which packet to choose for transmission
 - when chosen, packet benefits from a given throughput
 - buffers
 - which packet to drop, when no buffers

<u>FIFO</u>

- Current state of Internet routers
- Allows to share bandwidth
 - proportionally to the offered load
- No isolation
 - elastic flows (rate controlled by the source eg. TCP) may suffer from other flows
 - a greedy UDP flow may obtain an important part of the capacity
 - real time flows may suffer from long delays
- Last packets are dropped tail drop
 - TCP adapt bandwidth based on losses
- RED (Random Early Detection) techniques
 - choose a packet randomly before congestion and drop it

Priority Queue

- Several queues of different priority
 - source may mark paquets with priority
 - eg. ToS field of IP
 - packets of the same priority served FIFO
 - non-preemptive
- Problems
 - starvation high priority source prevents less priority sources from transmitting
 - TOS field in IP 3 bits of priority
 - how to avoid everybody sending high priority packets?

Class Based Queueing (CBQ)

- Also called Custom Queueing (CISCO)
- Each queue serviced in round-robin order
- Dequeue a configured byte count from each queue in each cycle
- Each class obtains a configured proportion of link capacity

Characteristics

- Limited number of queues (CISCO 16)
- Link sharing for Classes of Service (CoS)
 - based on protocols, addresses, ports
- Method for service differentiation
 - assign different proportions of capacity to different classes
 - not so drastic as Priority Queueing
- Avoids starvation

Per Flow Round Robin

- Similar to Processor Sharing or Time Sharing
 - one queue per flow
 - cyclic service, one packet at a time

Characteristics

- It modifies the optimal strategy of sources
 - FIFO: be greedy send as much as possible
 - RR: use your part the best
 - a greedy source will experience high delays and losses
- Isolation
 - good sources protected from bad ones
- Problems
 - flows sending large packets get more
 - cost of flow classification

Fair Queueing

- Round robin "bit per bit"
 - each packet marked with the transmission instant of the last bit
 - served in the order of the instants

Weighted Fair Queueing

- Fair queueing
 - equal parts : 1/n
- Weighted fair queueing
 - each flow may send different number of bits
- Example weights w_i

```
flow 1 flow 2 flow 3 1/3 1/6 1/2
```

 $x_i = C w_i$, C: link capacity

Rate guarantee

- Weights expressed as proportions (w_i guaranteed weight)
 - If no packets of a given flow, unused capacity shared equally by other flows

$$x_i >= C w_i$$

Weights to guarantee a given rate

$$W_i = X_i / C$$

Delay guarantee

- Flow constrained by a token bucket
 - rate r, buffer of b
 - delay limited by b/r
- If $r_i >= r$ (the rate obtained is sufficient for the flow)
 - delay limited by b/r_i
 - total delay limited by the sum of all delays

Delay guarantee

Random Early Detection

- Family of techniques used to detect congestion and notify sources
 - when a queue is saturated, packets are dropped
 - losses interpreted as congestion signals → decrease rate
- Idea
 - act before congestion and reduce the rate of sources
 - threshold for starting to drop packets
- Losses are inefficient
 - result in retransmissions, dropped packets should be retransmitted - enter Slow Start
- Synchronization of TCP sources
 - several packets dropped
 - several sources detect congestion and enter slow start at the same instant

RED

- Estimation of the average queue length
 - average ← q × measure + (1 q) × average
- If average ≤ th-min
 - accept the packet
- If th-min < average < th-max</p>
 - drop with probability p
- If th-max ≤ average
 - drop the packet

RED Characteristics

- Tends to keep the queue reasonably short
 - low delay
- Suitable for TCP
 - single loss recovered by Fast Retransmit
- Probability p of choosing a given flow is proportional to the rate of the flow
 - more packets of that flow, higher probability of choosing one of its packet

RED Characteristics

- Dynamic probability p

 - max-p: maximal drop probablility when the queue attains
 th-max threshold
 - $p = p-tmp/(1 nb-packets \times p-tmp)$
 - nb-packets: how many packets have been accepted since the last drop
 - p increases slowly with nb-packets
 - drops are spaced in time
- Recommended values
 - max-p = 0.02
 - if average in the middle of two thresholds, 1 drop in 50

Drop probability

Example network for RED

- Example network with three TCP sources
 - different link delays
 - limited queues on the link (20 packets)

Throughput in time

Throughput in time with RED

Facts to remember

- QoS in packet networks based on
 - scheduling algorithms
 - buffer management policies
- Traffic shaping helps to deal with QoS
 - limiting bursts
 - traffic description
 - traffic policing
- Used in
 - IntServ, DiffServ