

Advanced Computer Networks

<u>Internal routing - distance vector</u> <u>protocols</u>

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

_ . . .

Contents

- Principles of internal routing
- Distance vector (Bellman-Ford)
 - principles
 - case of link failures
 - count to infinity
 - split horizon
- RIP
- RIP v2
- IGRP

2

Routing algorithms

- Problem
 - find the **best** route to a destination
- What does it mean the best?
 - · metric to measure how a route is good
 - hops
 - link capacity
 - performance measures: link load, delay
 - cost
- Graph optimization Shortest Path
 - find the shortest path in a graph
 - shortest in the sense of a metric

Main algorithms

- Distance vector (Bellman-Ford)
 - routers only know their local state
 - · link metric and neighbor estimates
 - internal routing protocols (RIP, IGRP)
- Link state
 - knowledge of the global state
 - metrics of all links
 - global optimization (Shortest Path First Dijkstra)
 - internal routing protocols (OSPF, PNNI (ATM))
- Path vector
 - knowledge of the global state
 - path: sequence of AS with attributes
 - global optimization and policy routing
 - external routing protocols (BGP)

Routing protocols

Internet ISO

IGP distance vector: RIP, RIP v2,

IGRP

link state: OSPF IS-IS

dual: EIGRP

EGP EGP (obsolete)

BGP IDRP

host ICMP Redirect IS-ES

Metrics

- Static do not depend on the network state
 - number of hops
 - link capacity and static delay
 - cost
- Dynamic depend on the network state
 - link load
 - current delay

5

6

Traffic matrix

	Α	В	С	D
Α	0	8	2	3
В		0	6	4
С			0	1
D				0

		Α	В	С	D
	Α		AB	AC	ACD
	В			ВС	BCD
•	С				CD
	D				

Traffic

- Link model
 - queueing system M/M/1
 - exponentially distributed service and interarrival times

$$T = \frac{1}{\mu C - \lambda}$$

Delay

- Parameters
 - 1 Mb/s and 0.5 Mb/s links
 - mean packet length $1/\mu$ 5 Kbytes (40 000) bits
 - transmission time on 1 Mb/s link: 40 ms
 - transmission time on 0.5 Mb/s link: 80 ms

	λ pq/s(C Mb/s	μC pq/s	Т
AB	8	1	25	58 ms
AC	5	0.5	12.5	133 ms
BC	10	0.5	12.5	400 ms
CD	8	1	25	58 ms

9

11

Distance vector

- Dynamic routing based on distributed estimation of the distance to the destination
 - uses the distributed algorithm by Bellman-Ford (dynamic programming)
 - each router receives aggregated information from its neighbors
 - estimates the local cost to its neighbors
 - computes the best routes
 - no global network states
- Distance
 - number of hops
 - delay

Flooding

- Simple and robust routing
 - no need for routing tables
 - each packet duplicated on each outgoing link
 - packet duplication
 - duplicated packets destroyed at destination
 - robust tolerates link or router failures
 - optimal in some sense
 - the first packet has found the shortest path to the destination
 - cannot be compared to the shortest path calculated by Link State - no packet duplication
- Problem
 - increased load due to packet duplication
- Used in OSPF to distribute link state information and in ad hoc routing protocols (AODV, OLSR)

10

Bellman-Ford algorithm

- Bellman-Ford algorithm
 - node i knows cost c(i,k) to its immediate neighbours (+∞ for most values of k)
 - distance D(i,n) is given by: $D(i,n) = \min_k (c(i,k) + D(k,n))$
 - in the worst case, convergence after *N*-1 iterations
- Distributed Bellman-Ford algorithm
 - initially: D(i,n) = 0 if i directly connected to n and $D(i,n) = +\infty$ otherwise
 - node i receives from neighbour k latest values of D(k,n) for all n (distance vector)
 - node *i* computes the best estimates

$$D(i,n) = \min_{k} (c(i,k) + D(k,n))$$

Bellman-Ford algorithm

Distance vector example

- Simple network
 - · routers connected by links
 - destinations = subnetworks connected to routers
 - symmetric links
 - cost = number of hops

Example of Bellman-Ford

computation of G: 18+8=26, 31+10=41, 6+12=18, 6+31=37 \rightarrow choice of 18, H

Initialization

15

13

Distance vector announcement

Distance vector announcement

Distance vector announcement

Final

Link failure

Link failure

Final state after failure

Equal link costs - link failures

Counting to infinity

Α

44	link	
aest	link	cost
A	local	0
В	13	3
D	13	1
С	13	3
E	13	2

dest	link	cost
D	local	0
A	13	1
В	13	4
С	13	4
E	13	3

- Loop between A and D
- Exchange of routes, costs increase by 2 each cycle
- Convergence to a stable state
 - ∞ = large number
 - e.g. RIP: ∞ = 16

Split horizon

- Minimize the effects of bouncing and counting to infinity
- Rule
 - if A routes packets to X via B, it does not announce this route to B

25

26

Example of split horizon

Α

des	t link	cost
A	local	0
В	13	3
D	13	1
С	13	3
E	13	2

I	dest	link	cost
	D	local	0
	A	13	1
	В	16	∞
	С	16	00
	E	16	∞

В

dest	link	cost
В	local	0
A	14	3
С	12	1
E	14	1
D	14	2
_		

B 12 14 15 E E

dest	link	cost
E	local	0
A	16	2
В	14	1
D	16	1
С	15	1

 dest link
 cost

 C local
 0

 A 15
 3

 B 12
 1

 D 15
 2

 E 15
 1

cost	
0	
2	
1	
1	
1	27

Split horizon

Α

dest	link	cost
A	local	0
В	13	3
D	13	1
С	13	3
E	13	2
1.		

dest	link	cost
D	local	0
A	13	1
В	16	∞
С	16	00
E	16	∞

 Split horizon cuts the process of counting to infinity

Split horizon

dest link cost local 00 13 1 13 13 13 from D: dest cost D 0 13 B,C,E ∞ D dest link cost local 13 1 16 16

16

 Split horizon cuts the process of counting to infinity

29

Split horizon may fail

Split horizon may fail

Split horizon may fail

RIP v1

- Distance vector protocol
- Metric hops
- Network span limited to 15
 - ∞ = 16
- Split horizon
- Destination network identified by IP address
 - no prefix/subnet information derived from address class
- Encapsulated as UDP packets, port 520
- Largely implemented (routed on Unix)
- Broadcast every 30 seconds or when update detected
- Route not announced during 3 minutes
 - cost becomes ∞

May be repeated 25 timesCommand

Message format

address family

command

31

• REQUEST - 1 (sent at boot to initialize)

version

IP address

zero

zero

metric

• RESPONSE - 2 (broadcast each 30 sec)

33

34

0

zero

zero

Missing netmask

- A and E can forward to 10.0.0.0
- Packet to 10.2.0.1 can go through F or B
 - if sent to B, it goes through A and C
- If link C-D broken, no route to destination

RIP v2 (RFC 2453)

- Subnetworks
 - take into account CIDR prefixes and netmasks
- Authentication
- Multicast
 - 224.0.0.9 mapped to MAC 01-00-5E-00-00-09
 - on LAN only, no need for IGMP

Message format

command version unused
address family route tag

IP address
netmask
next router
metric

- Command, version unchanged
- One address family authentication
- Next router
 - used at the border of different routing domains (e.g. RIP and OSPF)
- Route tag
 - for external routes (used by BGP)

37

39

Routing domains

- Different routing domains
 - e.g. routers under different administrations that run different routing protocols (RIP, OSPF)
- If A wants to send a packet to F, it goes through D and E
- When announcing F, D adds E as next router

Announcing netmasks

- E can forward to 10.2.0.0
- Packet to 10.2.0.1 can go through F

Simple authentication

Configuration of gated (/etc/gated.conf)

```
rip yes {
    interface all
    version 2 multicast
    authentication simple "qptszwmz"
```

MD5 authentication

Seal

- MD5 digest on the message using a shared secret
- sequence number avoids replay attacks

MD5 authentication

Configuration of gated (/etc/gated.conf)

```
rip yes {
        interface all
        version 2 multicast
        authentication md5 "qptszwmz"
}
```

41

IGRP (Interior Gateway Routing Protocol)

- Proprietary protocol by CISCO
- Metric that estimates the global delay
- Maintains several routes of similar cost
 - load sharing
- Takes into account netmasks
- No limit of 15
 - number of routers included in messages
- Broadcast every 90 sec

Metric example

- Metric
 - Trans = 10000000/Bandwidth (time to send 10 Kb)
 - delay = (sum of Delay)/10
 - $m = [K_1*Trans + (K_2*Trans)/(256-load) + K_3*delay]$
 - default: K1=1, K2=0, K3=1, K4=0, K5=0
 - if K5 \neq 0, m = m * [K₅/(Reliability + K₄)]
- Bandwidth in Kb/s, Delay in us
 - At Venus: Route for 172.17/16: Metric = 10000000/784 + (20000+1000)/10 = 14855
 - At Saturn: Route for 12./8: Metric = 10000000/224 + (20000 + 1000)/10 = 46742

Conclusion

- Main distance vector protocols
- Largely deployed (Unix BSD routed)
- Simplicity
- Slow convergence
- Not suited for large and complex networks
 - Link State protocols should be used instead