

Cloud Computing - Data Centers

- Electrical power and economies of scale determine total data center size: 50,000 – 200,000 servers today
- Servers divided up among hundreds of different services
- Scale-out is paramount: some services have 10s of servers, some have 10s of 1000s

		<u>510</u>
Amortized	Cost* Component	Sub-Components
~45%	Servers	CPU, memory, disk
~25%	Power infrastructu	ure UPS, cooling, power distribution
~15%	Power draw	Electrical utility costs
~15%	Network	Switches, links, transit
- serve	costs dominate	
- netwo	rovisioning timesca	

Overall Data Center Design Goal

Agility - Any service, Any Server

- Turn the servers into a single large fungible pool -Let services "breathe" : dynamically expand and contract their footprint as needed
 - We already see how this is done in terms of Google's GFS, BigTable, MapReduce
- · Benefits
 - -Increase service developer productivity
 - -Lower cost
 - -Achieve high performance and reliability
- These are the three motivators for most data center infrastructure projects!

Networking Objectives

1. Uniform high capacity

- Capacity between servers limited only by their NICs No need to consider topology when adding servers => In other words, high capacity between two any servers no matter which racks they are located !
- 2. Performance isolation
 - Traffic of one service should be unaffected by others
- 3. Ease of management: "Plug-&-Play" (layer-2 semantics) Flat addressing, so any server can have any IP address
 Server configuration is the same as in a LAN

9

- Legacy applications depending on broadcast must work

What goes into a datacenter (network)?

- · Servers organized in racks
- Each rack has a `Top of Rack' (ToR) switch
- An `aggregation fabric' interconnects ToR switches

How big exactly?

- 1M servers [Microsoft] –less than Google, more than Amazon
- > \$1B to build one site [Facebook]
- >\$20M/month/site operational costs [Microsoft '09]

17

But only O(10-100) sites

Componentization leads to different types of network traffic

• "North-South traffic"

- -Traffic between external clients and the datacenter -Handled by front-end (web) servers, mid-tier application
- servers, and back-end databases
- -Traffic patterns fairly stable, though diurnal variations

"East-West traffic"

- -Traffic between machines in the datacenter
- -Comm within "big data" computations (e.g. Map Reduce)
- -Traffic may shift on small timescales (e.g., minutes)

24

What's different about DC networks?

Characteristics

- Huge scale:
- –~20,000 switches/routers
 contrast: AT&T ~500 routers

What's different about DC networks?

Characteristics

- Huge scale:
- Limited geographic scope: -High bandwidth: 10/40/100G
 - -Contrast: Cable/aDSL/WiFi
 - -Very low RTT: 10s of microseconds
 - -Contrast: 100s of milliseconds in the WAN

What's different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
- -Can deviate from standards, invent your own, etc.
- -"Green field" deployment is still feasible

30

What's different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints

 can change (say) addressing, congestion control, etc.
 can add mechanisms for security/policy/etc. at the endpoints (typically in the hypervisor)

What's different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
- · Control over one/both endpoints

31

High Bandwidth

- Ideal: Each server can talk to any other server at its full access link rate
- · Conceptually: DC network as one giant switch

41

What's different about DC networks?

<u>Goals</u>

• Extreme bisection bandwidth requirements -recall: all that east-west traffic -target: any server can communicate at its full link speed -problem: server's access link is 10Gbps!

What's different about DC networks?

<u>Goals</u>

- Extreme bisection bandwidth requirements
- Extreme latency requirements
 - -real money on the line
 - -current target: 1µs RTTs
 - -how? cut-through switches making a comeback
 - -how? avoid congestion
 - -how? fix TCP timers (e.g., default timeout is 500ms!)
 - -how? fix/replace TCP to more rapidly fill the pipe

45

Objectives for the Network of Single Data Center

Developers want **network virtualization**: a mental model where all their servers, and only their servers, are plugged into an Ethernet switch

- Uniform high capacity
 - Capacity between two servers limited only by their NICs
 - No need to consider topology when adding servers
- Performance isolation
 - Traffic of one service should be unaffected by others
- Layer-2 semantics
 - Flat addressing, so any server can have any IP address
 - Server configuration is the same as in a LAN
 - Legacy applications depending on broadcast must work

Interconnection structure

- You must set up a network peering N x N, N = 10, where each connected source can generate traffic up to 1 Gb/s.
- What would be an interconnection structure based Ethernet switches that have the following characteristics:
 - -1 port of 1 Gb/s, 10 ports of 200 Mb/s

Interconnection structure

- You have N Ethernet switches with 100 ports of 1 Gb/s.
- You need to design an interconnection structure that can support any traffic matrix.
- What is the largest single network you can build (maximum number of server-facing ports R)? How many switches N are required to build the largest possible network?

Interconnection structure

- The goal is to maximize the total number of outward facing ports = N*R
- the constraints on N and R

 -R+N-1 <= 100, (total number of ports on each switch shouldn't exceed 100)
 -2R/N = 1, (VLB constraint on the bandwidth of each link)
- so R=33, N=68

Agreed Ter	minology			
 IEEE 802.1ad Term 	ninology			
C-TAG	Customer VLAN TAG			
C-VLAN	Customer VLAN			
C-VID	Customer VLAN ID			
 S-TAG 	Service VLAN TAG			
 S-VLAN 	Service VLAN			
 S-VID 	Service VLAN ID			
 Additional Provider Backbone Bridge Terminology 				
I-TAG	Extended Service TAG			
 I-SID 	Extended Service ID			
 C-MAC 	Customer MAC Address			
 B-MAC 	Backbone MAC Address			
 B-VLAN 	Backbone VLAN (tunnel)			
 B-TAG 	Backbone TAG Field			
 B-VID 	Backbone VLAN ID (tunnel)			

