P2P for Collaborative Communities

[image: image4.png]widok Narzedzia Wryceki Debug _Pomoc

Plk_Transfer

~=lolx|

= RavVEIHOVUPEXR

Commuricator

[Mejtracker |

oje Tonenty 3
Ocena L # = [nazwa 1| Rozmiar [pobrano [Zekot.. [stetus Pefnych | Cagdcio... [r.pob... [pr.wysyt. [eva[m.. st
@ 1 & ooty 5788 06 00% Poberanie 0 0 06js 08k o o ok
@ 2 4 PearJam - Bnaural 2000) 320 Kbps 11925M8 3768 1,0% Pobierane 0(149) 46(17) osls o8 2dteh @ ok,
|
| Renking [k.| # = | mazwa [1| Rozmiar | Status | petnych | Cogtcio... | pr.wysyt. | Ratio | wystano [... | Status |
Nowyzsey .. @ 1T hurs Jebexapdt 206508 Wystne 00 0(0) 08k om0 06 o ok
Najwyzszy .. (@) 2 @ pzpsiprar 83,77MB8 Wysylanie 0(0) 00 0Bfs 0.000 0B @ ok
3 B kinga.pdf 141,28 W koleice. 0(0) 0(0) 08js 1000 14,3k @ OK

opeersw @

@ Ratic @ NATOK -, 2Usytkownikén 1Ps:0-0j0j0 7 75265 4 2088)s

[image: image5.png]

[image: image6.png]5 @ &

Rooms Add user Settings

Contacts

Guy Davies
Ho Htatus meseage

[cood 00

Fmin 2 mating
Friends Show a1)
Pieter-Jan Verschaeve
esthetioa + fysia blokken
Joris Artels I
Dnline

Stijn Ruelens - 42y
S=in"not here

Jabber Show a1)

Mattias Campe - 23,
Eetn
Marco Palombi - sy
1 for mre han & minutas
Sami Haahtinen - £z
@nor
Francesco Delfino
Ho tatus meszage

Authors:

Wojciech Eliasz

Tomasz Bartyński

Supervisor:
Prof. Andrzej Duda

31.
Introduction

32.
Requirements for file sharing P2P system

32.1.
Functional

32.2.
Non-functional

43.
State-of-the-art in file sharing protocols and programs

43.1.
Types of file sharing systems

43.2.
Overview of existing file sharing protocols

53.3.
FastTrack

53.4.
OpenFT

53.5.
BitTorrent

63.6.
E-Donkey

63.7.
Comparison of selected file sharing programs

94.
Requirements for instant messengers and VoIP systems

94.1.
Functional

94.2.
Non-functional

95.
State-of-the-art in VoIP programmes and Instant Messengers

95.1.
Comparision of VoIP programmes and Instant Messengers

126.
Conclusions

127.
System design

137.1.
Deployment

147.2.
Control flow

157.3.
Solutions

168.
Implementation

169.
Future work

1610.
Appendix A - Hamachi

1611.
Appendix B – Chimera

1712.
Appendix C – SIP-Communicator technical documentation

1713.
Appendix D – Azureus technical documentation

1814.
References

1. Introduction

Nowadays Internet and the Web offer a wide range of e-learning tools and learning materials. Despite of the diversity of software and materials, many problems remain unsolved. In [1] these problems are listed:
· Almost all technologies follow the traditional hierarchical learning model involving a teacher and a group of learners, a one-to-one instructional model

· Learners in a group usually work in isolation without collaboration or close communication

· The cost of investment in e-learning may be prohibitive, for instance the professional video and audio equipment for multimedia distribution is expensive and requires highly qualified staff; running e-learning portals relies on qualified personnel and requires constant maintenance

· Using complex learning objects and advanced communication tools is not easy for all learners, because it requires some level of computer literacy and initial instruction, which can be a barrier for large adoption
· Finding relevant learning objects and delivery of the required materials to learnenrs may be time-consuming and usually require in-depth knowledge and expertise.
Authors of [1] propose a solution based on P2P and VoIP systems that would:

· Enable wide and easy distribution of learning objects
· Change the traditional hierarchical teaching model into a flat one, a model in which anybody can teach anybody
· Support via the large scale distribution of learning objects the formation of collaboration communities with learners having common interest and objectives
· Provide an anchoring point for easy interactive communication between learners.
This project main objective is to provide a prototype implementation of system proposed in [1].
2. Requirements for file sharing P2P system
2.1. Functional

Except standard requirements for the file sharing system, such as publishing and downloading files, our system should provide additional features as follows:
· Describing Learning Objects

· Advanced searching mechanisms
· Publishing information about Learning Object autor

· Finding people who downloaded specific Learning Object
· Creating communities of lecturers and students interested in one topic

2.2. Non-functional

· Access to source code. All used libraries and source code should be published under license allowing to reuse and modify existing code, for instance open source license.
· Portability. Windows, Linux/Unix and Mac OS X platforms should be supported.

· Extensibility. Easy integration with existing instant messaging and Voice over IP systems.
· Easiness of use. P2P network should be easily established, publishing and downloading should be as simple as possible.

· Privacy. Ability to work in Virtual Private Network established by Hamachi. To learn more about Hamachi please refer to [3] and [4].
· Legal issues. Some programmes are prohibited in certain countries due to the fact that they assult copyrights.
· No spyware/addware. P2P systems that have closed source code may have some spyware or addware.
Non-functional requirements, typical for file sharing systems, such as the speed of file transfers in P2P network or share ratio are not crucial for this project. Our system objective is to support e-learning and sizes of Learning Objects files are expected to be small.
3. State-of-the-art in file sharing protocols and programs
3.1. Types of file sharing systems
· Centralized. List of resources and users logged in is kept on central server/servers. Such approach guarantees best searching and downloading efficacy but server is a single point of failure, it must be always online and must be maintained.

· Decentralized. Client program must bootstrap and find at least one node in the P2P network. Then it obtains a list of addresses of working nodes and establishes a certain number of connections with nodes. Decentralized network is more reliable but searching and downloading is less effective.
· Decentralized tracker-based. Process of downloading file is coordinated by specific tracker, which is given in the published file metadata. Tracker informs clients from which peers requested can file be downloaded. Advantages of this approach are hight speed of transfer and availability of large number of tracker sites.
· Multi-network. Clients can be connected to more than one network. This kind of systems is not popular.
· Anonymous peer-to-peer. Its main objective is to enable uncensored content exchange, remaining almost completely anonymous.
· Private file-sharing networks. Only registered users or nodes with certain addresses can be peers I such a network.
3.2. Overview of existing file sharing protocols
There is a wide range of file sharing protocols. Below we list the most common ones.
· FastTrack

· OpenFT
· BitTorrent

· E-Donkey

· Chimera

· Freenet
· GNUnet
· Gnutella
Taking into consideration requirements defined in section 1 we find first five of them most interesting, due to they are the most popular ones and propose the most mature solutions. We will provide more detailed information about them in next sections.
3.3. FastTrack
FastTrack is a peer-to-peer file sharing protocol. Nowadays it is one of the most commonly used file sharing protocols. It is estimated that there are about 2.4 million concurrent users.

FastTrack allows to resume interrupted downloads and to simultaneously download segments of one file from multiple peers by using UUHash [5] hashing algorithm. In order to improve protocol performance and scalability, powerful computers with a fast network connection running the client software, will automatically become supernodes and act as a temporary indexing server for slower clients. Client stores the addresses of supernodes and on startup tries to connect to them. After the connection is established client:

· Requests the list of active supernodes
· Send the list of files that it wants to share

· Queries supernode about files it wants to download. Queries are propagated among supernodes

Files are transferred between peers using HTTP[6] protocol.
FastTrack source code is closed, nevertheless there are some open source clients that can act as simple clients but communication between supernodes remains unknown.

3.4. OpenFT

OpenFT (OpenFastTrack) is based on some concepts of FastTrack but it is different protocol.
Three types of nodes can be distinguished in OpenFT network:

· User which is a simple client in the network and does not provide any additional functionality.

· Search node that handles searching files among its children.

· Index node, which is a machine with fast connections and large amount of memory cand keeps keep lists of available search nodes, collect statistics, and try to maintain the structure of the network.
User nodes choose randomly three search nodes for its parents and send them the list of files it wish to share. Search nodes does not exchange shared files list among themselves. Only search requests are propagated between search nodes. A search node can also be an index node.
3.5. BitTorrent

Another interesting file sharing protocol is BitTorrent. What distinguishes it from other protocols is a fact that peer downloading a file uploads it to another peer, thus network bandwidth is multiplied, server load is decreased and nodes are redundant.
Main concepts of BitTorrent protocol:

· Peer is user that downloads a file and makes it available for other peers.

· Seed is a peer that has complete file and makes it available for other peers.

· .torrent is a file containing metadata about file content and tracker address.

· Tracker is a server that holds addresses of peers downloading the file and publishing downloaded parts.

To start downloading process peer downloads .torrent file from a WWW server. It finds tracker addresses and connects to it. Trackers sends addresses of peers that publish the file or parts of file. Requested file is downloaded from peers.
Tracker is a single point of failure in BitTorrent protocol, therefore there are extensions to the original BitTorrent systems:

· Multi-tracker networks where there is more than one tracker and in case of failure of one server the rest still provides clients with necessary information.
· Tracker-less torrents, in which every peer is a tracker. There are two different and incompatible approaches. The former is to use Distributed Hash Table[7] and the latter to exploit Distributed Database (Azureus [8], [9]).
3.6. E-Donkey
E-Donkey is a p2p file sharing protocol. It uses dedicated servers that store the lists of shared files and locations. Clients must update their server’s list periodically.
Files on the eDonkey network are uniquely identified by compound MD4(see [10]) hash checksums, which are a function of the bit content of the file, thus files with identical content but different names as the same, and files with different contents but same name as different.
E-Donkey has also advanced mechanism of detecting corruption of file parts. If a corruption is detected the part of a file needs to be re-downloaded.
3.7. Comparison of selected file sharing programs

Every protocol may have many clients that are implemented in different programming languages, released under various licenses and provide vast range of extra features. In table below we compare some of the client side programs focusing on aspects that are most important for us (please refer to section 1).
	No.
	Name
	Protocol
	Implementation language
	Platforms
	License
	Portable

	1
	Kazaa
	FastTrack
	C++
	MS Windows
	Closed source
	No

	2
	Kazaa Lite
	FastTrack
	-
	MS Windows
	Closed source
	No

	3
	giFT
	OpenFT, Gnutella and FastTrack
	C
	· MS Windows

· Unix-like

· Mac OS X
	GPL
	No

	4
	iMesh
	FastTrack, Gnutella, Gnutella2
	C++
	MS Windows
	Closed source
	No

	5
	KCeasy
	Gnutella, FastTrack and OpenFT
	C++, Delphi
	MS Windows
	GPL
	No

	6
	MLDonkey
	BitTorrent, eDonkey, FastTrack, Gnutella, Gnutella2
	OCaml
	· MS Windows

· Unix-like

· Mac OS X
	GPL
	?

	7
	TrustyFiles
	eDonkey,

Gnutella, Gnutella2, FastTrack, BitTorrent
	-
	MS Windows
	Closed source
	No

	8
	BitTorrent client
	BitTorrent
	Python
	· MS Windows

· Unix-like

· Mac OS X
	GPL
	Yes

	9
	Azureus
	BitTorrent
	Java
	· MS Windows

· Unix-like

· Mac OS X
	GPL
	Yes

	10
	MonoTorrent (Client Library)
	BitTorrent
	C#
	· MS Windows

· Unix-like

· Mac OS X
	MIT/X11
	Yes

	11
	BitComet
	BitTorrent
	C++
	MS Windows
	Closed source
	No

	12
	BitTornado
	BitTorrent
	Python
	· MS Windows

· Unix-like

· Mac OS X
	Open source
	Yes

	13
	Qbittorrent
	BitTorrent
	C++
	Unix-like
	GPL
	No

	14
	Transmission
	BitTorrent
	C, ObjC
	· BeOS

· Unix-like

· Mac OS X
	MIT
	No

	15
	µTorrent
	BitTorrent
	C++
	MS Windows
	Closed source
	No

	16
	Acquisition
	BitTorrent, Gnutella
	ObjC, Java
	Mac OS X
	GPL
	No

	17
	Morpheus
	NEOnet, Gnutella, Gnutella2, BitTorrent
	-
	MS Windows
	Closed source
	No

	18
	Shareaza
	eDonkey, BitTorrent, Gnutella, Gnutella2
	C++
	MS Windows
	GPL
	No

	19
	aMule
	eDonkey
	C++
	· MS Windows

· Unix-like

· Mac OS X
	GPL
	No

	20
	eMule
	eDonkey
	C++
	MS Windows
	GPL
	No

	21
	eDonkey 2000
	eDonkey, Overnet
	C++
	· MS Windows

· Unix-like

· Mac OS X
	Closed source
	No

Tabel 1 Comparision of file sparing programmes sorted by protocols
Although many file sharing systems have implementation for every platform, they are not portable. Implementations in languages such C, C++ or ObjC are platform specific.

Applications implemented in C# are there theoretically portable but C# implementations for Linux and Mac OS X are not provided by different vendors and these technologies are not mature yet.
4. Requirements for instant messengers and VoIP systems
4.1. Functional

Our project does not introduce any unusual functional requirement for instant messengers and VoIP system.
4.2. Non-functional

Non-functional requirements are very similar to the ones for file sharing programmes.
· Access to source code.
· Portability.
· Extensibility.
· Easiness of use.
· Privacy.
· Legal issues.
· No spyware/addware.

5. State-of-the-art in VoIP programmes and Instant Messengers
5.1. Comparision of VoIP programmes and Instant Messengers

	Name
	License
	Protocol
	Encryption

	BitWise IM
	Proprietary freeware / Closed commercial
	
	Blowfish

	Coccinella
	GPL Free software
	XMPP, Jabber, IAX
	TLS/SSL and SASL

	Gizmo
	Proprietary freeware
	SIP, XMPP, Jabber
	SRTP

	Google Talk
	Proprietary freeware (libjingle is Free software
	XMPP, Jabber
	

	Globe7
	Proprietary freeware
	SIP
	SRTP

	Lotus Sametime
	Closed commercial
	SIP, SIMPLE, H.323
	

	OpenH323
	MPL free software
	H.323
	

	SIP Communicator
	LGPL free software
	SIP/SIMPLE, Jabber
	

	Zfone
	Viewable source / Proprietary license
	SIP
	ZRTP

	Zoiper
	Freeware + commercial
	SIP, RTP, STUN, IAX, IAX2
	

GoogleTalk

Instant messaging based on XMPP open protocol. VoIP is based around Jingle protocol.

Currently only Windows version is available and user needs to have google account to use it.

Only connection between GoogleTalk client and server is encrypted.

Google Talk supports the following standard voice codecs: PCMA, PCMU, G.723, iLBC, and Speex

Google reports that they are working on adding SIP support and Linux and Mac OS versions in future releases.

Google defined additional non-standard XMPP extensions that are now in the process of being reviewed by the XMPP standards body as official enhancements (XEP's) to the standards.

http://code.google.com/apis/talk/jep_extensions/extensions.html
Jingle

Jingle is an extension to the Jabber/XMPP protocol, to allow for peer-to-peer (p2p) signalling for multimedia interactions such as voice or video. Jingle is defined in XMPP Extension Protocols documents:

XEP-0166: Jingle

XEP-0167: Jingle Audio Content Description Format

XEP-0177: Jingle Raw UDP Transport

XEP-0179: Jingle IAX Transport Method

XEP-0180: Jingle Video Content Description Format

XEP-0176: Jingle ICE Transport

XEP-0181: Jingle DTMF

Clients supporting Jingle:

Asterisk

Coccinella http://hem.fyristorg.com/matben/
Google Talk http://www.google.com/talk/
Kopete http://kopete.kde.org/
Jabbin http://www.jabbin.com
Psi http://psi-im.org/
Tapioca http://tapioca-voip.sourceforge.net/wiki/index.php/Tapioca
Telepathy Gabble

Libjingle

The libjingle SDK consists of C++ source code and documentation that enable you to design applications that connect and exchange data across a network

Libjingle is available on Google Code for both Windows and UNIX/Linux operating systems.

Although the libjingle protocol and Jingle are very similar, they are not the same, and are not interoperable.

http://code.google.com/apis/talk/libjingle/
Another client utilizing libjingle library is Psi Communicator Jingle branch, also known as Jabbin.

http://psi-im.org/wiki/Jingle_branch
http://www.jabbin.com
http://pl.wikipedia.org/wiki/Lista_bibliotek_programistycznych_do_Jabbera
P2PSIP

P2P approach can be usefull in following scenarios:

· small organizations

· no internet connectivity

· Ad-hoc groups

P2PSIP implementation uses Distributed Hash Table for location purposes:

· use pure DHT to find the other User Agents

· use DHT for location, but implemented as SIP messages

· use standard SIP to signal once resources are located

P2PSIP UserAgent is client, proxy and database at the same time.

Current research covers problems of NAT traversal techniques to be incorporated in implementation of P2PSIP.

http://www.p2psip.org/
http://www1.ietf.org/mail-archive/web/p2psip/current/
SOSIMPLE Project

A Serverless, Standards-based, P2P SIP Communication System

Self Organizing SIMPLE, based on existing SIP/SIMPLE architecture.

Although the implementation is not completed authors have located software necessary to implement the desired funcionality:

· Chord Distributed Hash Table

· ReSIProcate – SIP/SIMPLE stack created in C++

Kundan Singh's at Columbia University P2PSIP implementation

Kundan Singh managed to implement P2PSIP adaptor that allows existing SIP user agents to connect to the P2P-SIP network without modifying the user agent. SIPpeer can also act as a SIP user agent, proxy or registration server with command line user interface.

Current implementation is described in following document:

http://www1.cs.columbia.edu/~kns10/publication/sip-p2p-design.pdf
http://www1.cs.columbia.edu/~kns10/research/p2p-sip/
Last IETF Meeting in Prague

http://www.p2psip.org/ietf68.php
SIPeerior Company

http://www.sipeerior.com
SIPeerior offers a range of software development toolkits for license to vendors who wish to offer P2PSIP-based products. In addition, we offer professional services to support P2PSIP product development and integration using our toolkits.

P2PSIP Core Development Kit

P2PSIP Endpoint Development Kit

VoIP contacts searching

Bittorent tracker provides information about hosts sharing the same file,

6. Conclusions
Taking into consideration all functional, non-functional requirements and a variety of P2P file sharing systems, we have found Azureus to be the best candidate for our project.
Tracker server is included in the client program, thus users can publish their content on their own server. Learning Objects can be described with .torrent meta-files. Azureus displays information about peers who publish or download the same file, so creating communities of people interested in one domain is possible.
It is implemented in Java, which guarantees best portability among Windows, Linux and Mac OS X platforms. Further more, Java is one of the leading programming languages with many opensource libraries and good API documentation. Azureus uses Standard Widget Toolkit library [11], which provides efficient, portable user-graphical interface. SWT is available for Windows, Linux and Mac OS X systems. Azureus is published under GPL license, therefore we can freely use and modify its source code, enriching the software with e-learning oriented features. Source repository is available at [13]. Azureus is easy in use even for inexperienced end-user. Moreover it provides a multilanguage support for users on Web pages such as [14], [15] and [16]. Azureus does not contain any spyware/addware software.
VoIP and instant messangers software offers a wide range of programs to choose from. After applying both, functional and nonfunctional, requirements SIP Communicator appeared to be the most promising candidate.
7. System design

The concept of the system is to integrate a P2P file sharing program with a VoIP program. Both Azureus and SIP Communicator are implemented in Java, what makes integration possible. End user interacts with one application regardless of the fact, that there are two components underneath.
[image: image7.emf]id Component Model

P2P for collaborative communities

Azureus

SIP

Communicator

Figure 1Overview of P2P-sip system architecture
SIP Communicator uses OSGi framework which implies the way how two components can communicate. It is required to implement support for OSGi in the Azureus components. This was fulfilled by implementing an AzureusFacadeService. It is illustrated in detail on Figure 2.
Figure 2[image: image8.png]!

[AzureusFacadeService

aare

[Faetiessage)
frprocesshlessage()
l-geisipld)

|sgetabberid()

 Integration of Azureus and SIP Communicator using OSGi frmawork.

7.1. Deployment
Azureus and SIP Communicator can be run on every user machine that has JRE installed and network connectivity. Such machines would constitute ad-hoc P2P network. Additional requirements for communication are:

· Jabber server – can be private, started for p2p-sip system users or public one that can be used free of charge

· SIP server – unavoidable in almost all VoIP systems based on SIP.
Deployment of system is illustrated on Figure 3.
[image: image1.png]‘ ——sip-

SIP Server

Peer & Tracker

Jabber Server

Figure 3 P2P-SIP deployment
7.2. Control flow
In order to create a community of users that would grow automatically a separate module was designed and implemented. One community is represented by a group in SIP Communicator. Contact sender queries SIP Communicator using AzureusFacadeService for the message that should be sent to all contacts in one community. Next the message is send to every member in the community. See Figure 4.
[image: image2.png]ontactsSendr AzuausFacadeSenica
sebessage 7 7

[——

getMessage. ———

e

SendContacts

Figure 4 Sending roster to peers in same community
When a message is received it is propagated thru AzureusFacadeService to SIP Communicator, thus contacts are distributed in the community. See Figure 5
[image: image3.png]oniacisSender fzureusFacadeSenice

T
|
|

message received |
|
|
|

I processhessage
I addlabberContacts

| —
| | sesipcones |
I
e

|

H

Figure 5 Message with roster received
7.3. Solutions

See slides 25-30, mention jabber protocols for contacts exchange

Many solutions of creating communities and distributing contacts have been designed and taken into consideration. Here we discuss the most significant ones:
· Modify peer id.
· This idea would be the most convenient because information would be distributed by Azureus.
· Not applicable because peer_id is a 20-byte string. Azureus uses:'-', two characters for client id, four ascii digits for version number, '-', followed by random numbers. Nor Jabber ID nor SIP address can be included in peer_id.
· Include tracker jabber and SIP addresses in .torrent metafile
· Implemented as an additional property

· While publishing new content addresses of the publisher are added to .torrent file

· Remains compatible with standard client (additional entry in dictionary will be omitted)
· Modify HTTP request to include communication addresses
· Request are processed by external trackers, embedded trackers and peers

· Difficult to implement

· Requires modifications in various parts of Azureus
· Modify peers handshake
· The handshake is a required message and must be the first message transmitted by the client.
· Handshake has a fixed size and syntax: <pstrlen><pstr><reserved><info_hash><peer_id> and can not be changed

· Obtain communication IDs from communicator and send it to all peers downloading specific Learning Object. Can be achieved in two ways:
· By implementation of XEP-0093 or XEP-0144 Jabber Extension Protocols for roster exchange

· By implementation of our own protocol using plain TCP sockets, hosts are periodically sending information about known contacts to all peers in the same community
8. Implementation

Besides integration of Azureus with SIP Communicator we also implemented the last discussed solution for creating communities.

The code repository is located at svn+ssh://delos.imag.fr/home/svn/tools/p2p-sip/agh/p2p-sip at /p2p-sip path.
The project is run in a following way:

Entry class is org.apache.felix.main.Main
With following virtual machine parameters:

-Dfelix.config.properties=file:./SIPC/lib/felix.client.run.properties

-Djava.util.logging.config.file=./SIPC/lib/logging.properties

-Djava.net.preferIPv6Addresses=false

-Djava.library.path=./SIPC/lib/native/windows

9. Future work

Our software can be easily enhanced by:

· Defining unique version of our software in Azureus style and including it in peer id, thus deployed clients could recognize themselves.
· Consider various policies of distributing contacts.
· Compose SIP-Communicator into Azureus view.
Besides that our system can be enriched by using ontologies to describe and search Learning Objects. The concept of using ontologies and an anchoring point can be found in a separate document included in projects documentation (see).
10. Appendix A - Hamachi
Beta version for Microsoft Windows, Mac OS X and Linux.

Each client is assigned IP address from 5.0.0.0/8 network, which is associated with public cryptographic key.
Users can join existing virtual networks or create new ones.
Hamachi creates another network interface which captures all traffic directed to 5.0.0.0/8 network and wraps it in specially initiated UDP connection. Hamachi can handle tunneling for IP traffic and

Windows version can also tunnel IPX traffic.
Communication uses vendor provided mediation server.

Current version has closed sources.

11. Appendix B – Chimera

“Chimera is a light-weight C implementation of a "next-generation" structured overlay that provides similar functionality as prefix-routing protocols Tapestry and Pastry.”
http://current.cs.ucsb.edu/projects/chimera/
12. Appendix C – SIP-Communicator technical documentation

All the necessary technical documentation for SIP Communicator can be found at http://sip-communicator.org/ webpage.

Modified and added classes:
net.java.sip.communicator.service.azureus.AzureusFacadeService interface

net.java.sip.communicator.impl.azureus package

13. Appendix D – Azureus technical documentation

This section provides technical information and knowledge that was gained during work on Azureus.

· Both Azureus 2 and 3 are under active development.

· Projects are two way dependent. Azureus 3 uses core classes of 2.5 version and version 2.5 tries to open new 3.0 GUI.

· Code snipet below gets GlobalManager, then obtains all DownloadManagers. Every DownloadManager manages one download (that will be mapped to one community). Next we obtain message for every community using AzureusFacadeService and get all member in a community (peers downloading/uploading one file). //your code here
should be replaced by your implementation of contacts distribution. The code is a part of fr.imag.contactmanager.ContactsManager class (p2p-sip/azureus2/src/)
Object obj = null;

obj = core.getGlobalManager().getDownloadManagers().toArray();

for(int i=0;i<obj.length;i++){

if(obj[i] instanceof DownloadManager){

dM = (DownloadManager) obj[i];

community = dM.getDisplayName();

msg = azFacade.getMessage(community);

peers = dM.getCurrentPeers();

if(peers != null){

for(int j=0;j<peers.length;j++){
//your code here

}

}

}

}

· Azuresu core can be obtained like this:
core = AzureusCoreFactory.getSingleton();
· Implementation of peer class: org.gudy.azureus2.core3.peer.impl.PEPeerTransport (p2p-sip/azureus2/src/)
· Splash screen: com/aelitis/azureus/ui/images/azureus.jpg (p2p-sip/azureus3/src/)
· Azureus constants: com.aelitis.azureus.util.Constants (p2p-sip/azureus2/src/)
· Adding plugins in source: org.gudy.azureus2.pluginsimpl.local.PluginInitializer and org.gudy.azureus2.plugins.PluginManagerDefaults (p2p-sip/azureus2/src/)

· Modifying http request on client side: org.gudy.azureus2.pluginsimpl.local.clientid.ClientIDManagerImpl (p2p-sip/azureus2/src/)

· Building Azureus 3.0 GUI see properties files in p2p-sip/azureus2/src/com/aeliti/azureus/ui/skin directory
14. References

1. Aleksander Bulkowski, Edward Nawarecki, and Andrzej Duda . Peer-to-Peer : an Enabling Technology for Next-Generation E-learning. EDEN Fourth Research Workshop. Barcelona, Spain, 25-28 October, 2006.
2. Java 1.5 on Mac Os X http://www.apple.com/downloads/macosx/apple/macosx_updates/j2se50release4intel.html
3. Hamachi homepage

http://www.logmeinhamachi.com/
4. Hamachi in wikipedia

http://en.wikipedia.org/wiki/Hamachi
5. UUHash algorithm in wikipedia
http://en.wikipedia.org/wiki/UUHash
6. HTTP protocol in wikipedia

http://en.wikipedia.org/wiki/HTTP
7. DHT in wikipedia

http://en.wikipedia.org/wiki/Distributed_hash_tables
8. Azureus in wikipedia

http://en.wikipedia.org/wiki/Azureus
9. Azureus homepage

http://azureus.sourceforge.net/
10. MD4 cryptographic hash function in wikipedia

http://en.wikipedia.org/wiki/MD4
11. Standard Widget Toolkit

http://www.eclipse.org/swt/
12. GNU General Public License

http://www.gnu.org/copyleft/gpl.html
13. Azureus source code repository
:pserver:anonymous@azureus.cvs.sourceforge.net:/cvsroot/azureus
14. Azureus wiki

http://www.azureuswiki.com/
15. Azureus wiki in French

http://www.fr.azureuswiki.com/
16. Azureus wiki in Polish

http://www.azureus-polska.pl/
17. SIP-Communicator

http://sip-communicator.org/
18. SIP-Communicator at java.net

https://sip-communicator.dev.java.net/
19. Bittorent protocol specification
http://www.bittorrent.org/protocol.html and http://wiki.theory.org/BitTorrentSpecification

20. Ontologies in file sharing

file OWLinFS.doc
21. Presentation of P2P-SIP project
file P2PforCollaboraticeCommunities.ppt
