

Advanced Computer Networks

Congestion control

Prof. Andrzej Duda duda@imag.fr

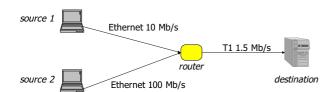
http://duda.imag.fr

Contents

- Objectives of Congestion Control
 - effciency
 - fairness
- Max-min fairness
- Proportional fairness
- Additive increase, multiplicative decrease
- Different forms of congestion control

2

Congestion control



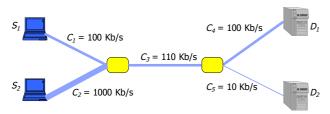
- How to allocate network resources?
 - link capacity
 - buffers at routers or switches
- What to do when the traffic exceeds link capacity?
 - · congestion control

Performance criteria

- Efficiency
 - best use of allocated resources
 - max throughput 100 % utilization
 - min delay 0 % utilization
- Fairness (équité)
 - fair share to each user
 - different definitions of fairness
 - equal share
 - max-min fairness
 - proportional fairness

4

Congestion Control - example



- Sources send as much as possible
- Allocation of throughput
 - if the offered traffic exceeds the capacity of a link, all sources see their traffic reduced in proportion of their offered traffic
 - approximately true if FIFO in routers

Throughput allocation

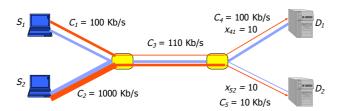
Throughput x_{ls}: source s on link I

• Traffic λ_s : generated by source s

• Allocation Our example: $x_{11} = \min (\lambda_1, C_1) \qquad x_{11} = 100$ $x_{22} = \min (\lambda_2, C_2) \qquad x_{22} = 1000$ $x_{3i} = \min (x_{ii}, C_3 x_{ii} / (x_{11} + x_{22})) \qquad x_{31} = 110 \times 100 / 1100 = 10$ $x_{32} = 110 \times 1000 / 1100 = 100$ $x_{41} = \min (x_{31}, C_4) \qquad x_{41} = 10$ $x_{52} = \min (x_{32}, C_5) \qquad x_{52} = 10$

throughput $\theta = x_{41} + x_{52}$ throughput $\theta = 20$ Kb/s

Congestion Control - example



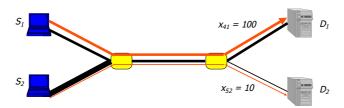
- S1 sends 10 Kb/s because it is competing with S2 on link 3
- S2 is limited on link 5 anyway

Congestion Control - exemple

- How to increase throughput?
 - if S_2 is aware of the global situation and if it would cooperate
 - S_2 reduces x_{22} to 10 Kb/s, because anyway, it cannot send more then 10 Kb/s on link 5
 - $x_{31} = 100$ Kb/s and $x_{41} = 100$ Kb/s without any penalty for S_2
 - throughput is now $\theta = 110 \text{ Kb/s}$

•

Congestion Control - exemple

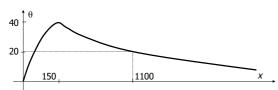


Optimal use of resources

Efficiency criterion

- In a packet network, sources should limit their sending rate by taking into consideration the state of the network. Ignoring this may put the network into congestion collapse
 - network resources are not used efficiently
 - performance indices perceived by sources are not satisfactory
- One objective of congestion control is to avoid such inefficiencies

Throughput vs. offered load



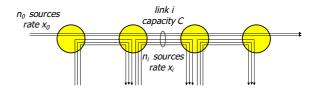
 Same example - sources increase their throughput in parallel but at different rate

11

- $\lambda_1 = \lambda$, $\lambda_2 = \lambda^2/10$, λ a parameter
- $\lambda_1(1) = 1$, $\lambda_2(1) = 1/10$
- $\lambda_1(10) = 10$, $\lambda_2(10) = 10$
- λ_1 (100) = 100 , λ_2 (100) = 1000
- offered load $x = \lambda_1 + \lambda_2$
- x = 1100, $\theta = 20 \text{ Kb/s}$

Efficiency versus Fairness

- Parking lot scenario
 - link capacity : C
 - n_i sources, rate x_i , i = 1, ..., I
 - traffic on link $i: n_0 x_0 + n_i x_i$

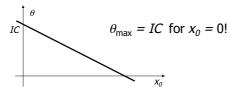


Maximal throughput

- For given n_0 and x_0 , maximizing the throughput requires that
 - $n_i x_i = C n_0 x_0$
- Total throughput, measured at the network output

•
$$\theta = n_0 x_0 + \sum n_i x_i = n_0 x_0 + \sum (C - n_0 x_0) =$$

= $n_0 x_0 + I(C - n_0 x_0) = IC - (I - 1) n_0 x_0$



Fairness

- Maximizing network throughput as a primary objective may lead to large unfairness
 - some sources may get a zero throughput
- Fairness criterion
 - let allocate the same share to all sources, e.g. for $n_i = 1$
 - $x_i = C/2$
 - $\theta_{fair} = (I+1)C/2$
 - roughly half of the maximal throughput

14

Equal share fairness

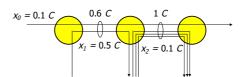
- Consider the parking lot scenario for general values of n_i
 - equal share on link i
 - $x_i = C/(n_0 + n_i), i = 1, ..., I$
 - let decrease x_0 to increase θ (we have seen that this maximizes throughput)
 - $x_0 = \min C / (n_0 + n_i),$
 - example
 - I = 2, $n_0 = n_1 = 1$, $n_2 = 9$
 - link 2: $x_2 = C/(1+9) = 0.1 C$
 - link 1: $x_1 = C / (1 + 1) = 0.5 C$
 - $x_0 = \min (0.5 C, 0.1 C) = 0.1 C$
- Allocating equal shares is not a good solution
 - some flows can get more

Example

Problem

15

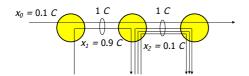
- link 1 : 0.6 C
 - underutilized
- link 2 : 1 C



1

Max-Min Fairness

- We can increase x_1 without penalty for other flows
 - $x_0 = 0.1 \, C$, $x_1 = 0.9 \, C$, $x_2 = 0.1 \, C$



Max-Min Fairness

- Allocating resources in an equal proportion is not a good solution since some sources can get more that others without decreasing others' shares
- Max-Min fair allocation
 - Min: because of the fairness on bottleneck links
 - Max: because we can increase throughput whenever possible

Progressive filling

- Bottleneck link / for source s
 - link / is saturated : $\sum x_i = C$
 - source s on link / has the maximum rate among all sources using that link
- Progressive filling allocation
 - $x_i = 0$
 - increase x_i equally until $\sum x_i = C$
 - rates for the sources that use this link are not increased any
 - all the sources that do not increase have a bottleneck link (Min)
 - continue increasing the rates for other sources (Max)

Example

- Parking lot scenario
 - $x_i = 0$
 - $x_i = d$ until $n_0 x_0 + n_i x_i \le C$
 - bottleneck link for $d_1 = \min (C / (n_0 + n_i))$, source 0 or i
 - $x_0 = \min (C/(n_0 + n_i))$
 - increase other sources
 - $x_i = (C n_0 x_0) / n_i$
- In our example
 - $x_0 = 0.1 \, C, \, x_2 = 0.1 \, C$
 - $x_1 = 0.9 C$

19

Proportional Fairness

- Equal share fairness and Max-min fairness
 - per link only
 - · do not take into account the number of links used by a flow
 - flows x_0 benefit from more network resources than flows x_i
- Another fairness
 - give higher throughput to flows that use less resources
 - give smaller throughput to flows that use more resources
- Proportional fairness

Proportional Fairness

• An allocation of rates x_s is proportionally fair if and only if, for any other feasible allocation y_s we have (S sources)

$$\sum_{s=1}^{S} \frac{y_s - x_s}{x_s} \le 0$$

- Any change in the allocation must have a negative average change
- Parking lot example with n_s = 1
 - max-min fair allocation $x_s = C/2$ for all s
 - let decrease x_0 by δ : $y_0 = C/2 \delta$, $y_s = C/2 + \delta$, s = 1, ..., I
 - average rate of change is positive not proportionally fair for I≥2!

$$\left(\sum_{s=1}^{I} \frac{2\delta}{c}\right) - \frac{2\delta}{c} = \frac{2(I-1)\delta}{c}$$

Proportional Fairness

 There exists one unique proportionally fair allocation. It is obtained by maximizing

$$J(\vec{x}) = \sum_{s} \ln(x_s)$$

over the set of feasible allocations for all sources s

Parking lot example

- For any choice of x_0 we should set x_i such that
 - $n_0 x_0 + n_i x_i = C, i = 1, ..., I$
- Maximize

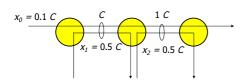
$$f(x_0) = n_0 \ln(x_0) + \sum_{i=1}^{J} n_i (\ln(C - n_0 x_0) - \ln(n_i))$$
over the set $0 \le x_0 \le C / n_0$.

Over the second The maximum is for $x_0 = \frac{C}{\sum_{i=0}^{r} n_i} \qquad x_i = \frac{C - n_0 x_0}{n_i}$

- If $n_i = 1$, $x_0 = C/(I+1)$, $x_i = CI/(I+1)$
- Max-min allocation is C/2 for all rates sources of type 0 get a smaller rate, since they use more network resources

Comparisons

- $I = 2, n_i = 1$
- max throughput:
 - $x_0 = 0$, throughput = 2C
- equal-share and max-min:
 - $x_0 = C/2$, $x_i = C/2$, throughput = 1.5C
- proportional fairness:
 - $x_0 = C/3$, $x_i = 2C/3$, throughput = 5C/3



27

End-to-end congestion control

- End-to-end congestion control
 - binary feedback from the network: congestion or not
 - rate adaptation mechanism: decrease or increase
- Modelina
 - I sources, rate x_i(t), i = 1, ..., I
 - link capacity: C
 - discrete time, feedback cycle = one time unit
 - during one time cycle, the source rates are constant, and the network generates a binary feedback signal $y(t) \in \{0, 1\}$
 - sources: increase the rate if y(t) = 0 and decrease if y(t) = 1
 - feedback

$$y(t) = [if \left(\sum_{i=1}^{l} x_i(t) \le c\right) then \ 0 \ else \ 1]$$

Linear adaptation algorithm

• Find constants u_0 , u_1 , v_0 , v_1 , such that

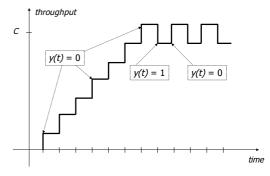
$$x_i(t+1) = u_{y(t)} x_i(t) + v_{y(t)}$$

- we want to converge towards a fair allocation
- · one single bottleneck, so all fairness criteria are equivalent
- we should have $x_i = C/I$
- the total throughput

$$f(t) = \sum_{i=1}^{I} x_i(t)$$

should oscillate around C: it should remain below C until it exceeds it once, then return below C

Linear adaptation algorithm



28

Necessary conditions

$$f(t+1) = u_{y(t)}f(t) + v_{y(t)}$$

we must have

 $u_0 f + v_0 > f$, increase rate if feedback 0 $u_1 f + v_1 < f_r$ decrease rate if feedback 1

· this gives the following conditions

$$u_1 < 1$$
 and $v_1 \le 0$

(A)

and

 $u_1 = 1 \text{ and } v_1 < 0$

(B)

 $u_0 > 1$ and $v_0 \ge 0$

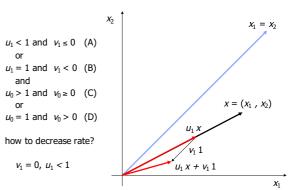
(C)

(D)

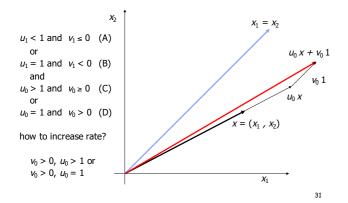
or

 $u_0 = 1 \text{ and } v_0 > 0$

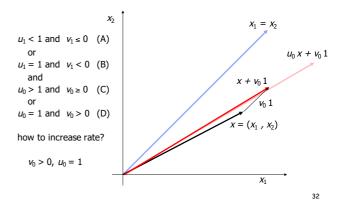
Ensure fairness



Ensure fairness



Ensure fairness



Ensure fairness

- When we apply a multiplicative increase or decrease, the unfairness is unchanged
- An additive increase decreases the unfairness, whereas an additive decrease increases the unfairness
- To obtain that unfairness decreases or remains the same, and such that in the long term it decreases
 - $v_1 = 0$ decrease must be **multiplicative**
 - $u_0 = 1$ increase must be **additive**

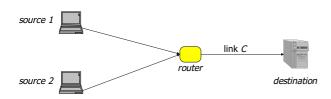
Result

- Fact
 - In order to satisfy efficiency and convergence to fairness, we must have a multiplicative decrease (namely, $u_1 < 1$ and $v_1 = 0$ and a non-zero additive component in the increase (namely, $u_0 \ge 1$ and $v_0 > 0$).
 - If we want to favour a rapid convergence towards fairness, then the increase should be additive only (namely, $u_0=1$ and $v_0>0$).
- Additive increase, Multiplicative decrease

33

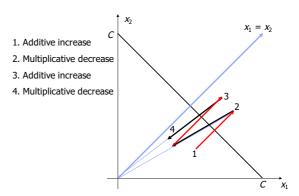
3-

Why AI-MD works?



 Simple scenario with two sources sharing a bottleneck link of capacity C

Throughput of sources



Different types of CC

- Router/Switch centric (ATM)
 Host centric (TCP)
 - switch decides which packet transmit or discard
 - switch notifies the source at which rate it should send
- Open loop (ATM)
 - resource reservation
 - admission control
- - host observes the network and adjust the rate
- Closed loop with feedback
 - information on congestion
 - implicit packet loss (TCP)
 - explicit (RTCP)

Different types of CC

- Rate-based control
 - negociated with network
 - adjusted if needed
 - ATM, RTP
- Open loop implies
 - Router/Switch centric
 - rate-based control
- · Window-based control
 - · defines the volume of data to send
 - TCP

Facts to remember

- In a packet network, sources should limit their sending rate by taking into consideration the state of the network
- Maximizing network throughput as a primary objective may lead to large unfairness
- Objective of congestion control is to provide both efficiency and some form of fairness
- Fairness can be defined in various ways: equal share, max-min, proportional
- End-to-end congestion control in packet networks is based on binary feedback and the adaptation mechanism of additive increase, multiplicative decrease.