

Advanced Computer Networks

Internal routing - distance vector protocols

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

case of link failures

Principles of internal routing

Distance vector (Bellman-Ford)

- count to infinity
- snlit horizon

principles

Contents

- RIP
- RIP v2
- IGRP

Routing algorithms

- Problem
 - find the **best** route to a destination
- What does it mean the best?
 - metric to measure how a route is good
 - hops
 - link capacity
 - performance measures: link load, delay
 - cost
- Graph optimization Shortest Path
 - · find the shortest path in a graph
 - shortest in the sense of a metric

Main algorithms

- Distance vector (Bellman-Ford)
 - · routers only know their local state
 - link metric and neighbor estimates
 - internal routing protocols (RIP, IGRP)
- Link state
 - knowledge of the global state
 - · metrics of all links
 - global optimization (Shortest Path First Dijkstra)
 - internal routing protocols (OSPF, PNNI (ATM))
- Path vector
 - knowledge of the global state
 - · path: sequence of AS with attributes
 - · global optimization and policy routing
 - external routing protocols (BGP)

Routing protocols

Internet ISO

IGP distance vector: RIP, RIP v2,

IGRP

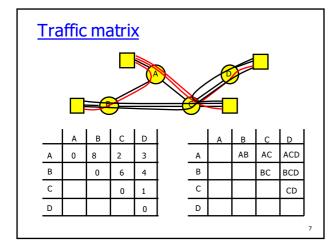
link state: OSPF

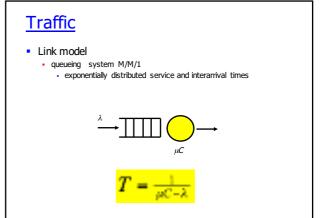
IS-IS

dual: EIGRP

EGP (obsolete)

BGP


IDRP


host

EGP

ICMP Redirect IS-ES **Metrics**

- Static do not depend on the network state
 - number of hops
 - link capacity and static delay
 - cost
- Dynamic depend on the network state
 - link load
 - current delay

Delay

- Parameters
 - 1 Mb/s and 0.5 Mb/s links
 - mean packet length $1/\mu$ 5 Kbytes (40 000) bits
 - transmission time on 1 Mb/s link: 40 ms
 - transmission time on 0.5 Mb/s link; 80 ms

	λ pq/s	C Mb/s	μ C pq/s	T
AB	8	1	25	58 ms
AC	5	0.5	12.5	133 ms
BC	10	0.5	12.5	400 ms
CD	8	1	25	58 ms

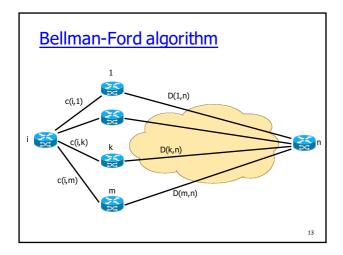
Flooding

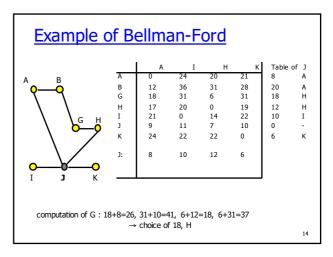
- Simple and robust routing
 - no need for routing tables
 - each packet duplicated on each outgoing link
 - packet duplication
 - duplicated packets destroyed at destination
 - robust tolerates link or router failures
 - optimal in some sense
 - the first packet has found the shortest path to the destination
 - cannot be compared to the shortest path calculated by Link State no packet duplication
- Problem
- increased load due to packet duplication
- Used in OSPF to distribute link state information and in ad hoc routing protocols (AODV, OLSR)

Distance vector

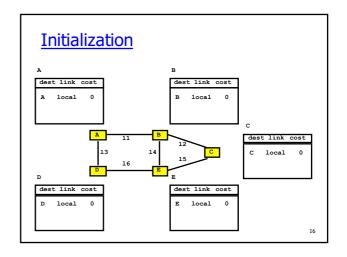
- Dynamic routing based on distributed estimation of the distance to the destination
 - uses the distributed algorithm by Bellman-Ford (dynamic programming)
 - each router receives aggregated information from its neighbors
 - estimates the local cost to its neighbors
 - · computes the best routes
 - no global network states
- Distance
 - number of hops
 - delay

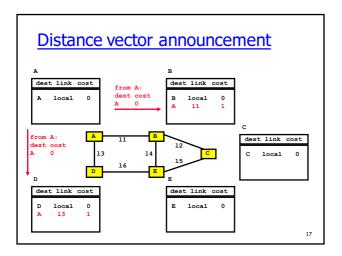
Bellman-Ford algorithm

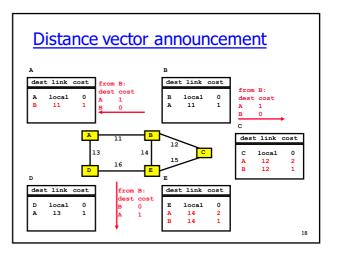

Bellman-Ford algorithm

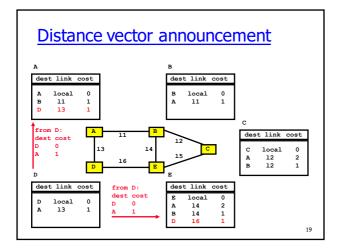

11

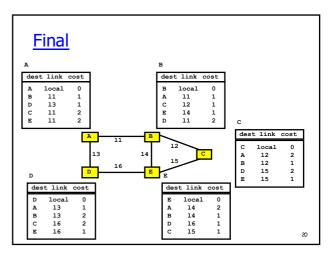
- node i knows cost c(i,k) to its immediate neighbours $(+\infty)$ for most values of k)
- distance D(i,n) is given by: $D(i,n) = \min_k (c(i,k) + D(k,n))$
- in the worst case, convergence after N-1 iterations
- Distributed Bellman-Ford algorithm
 - initially: D(i,n) = 0 if i directly connected to n and D(i,n) = 0+∞ otherwise
 - node i receives from neighbour k latest values of D(k,n) for all n (distance vector)
 - node i computes the best estimates

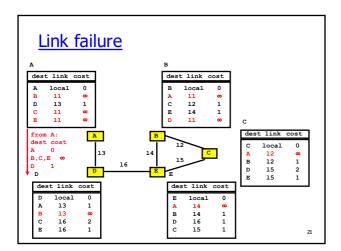

 $D(i,n) = \min_k (c(i,k) + D(k,n))$

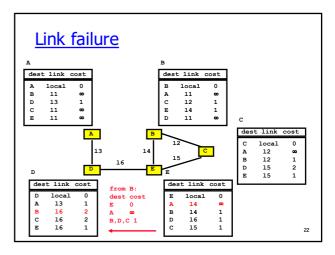

12

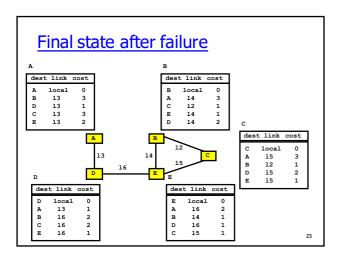


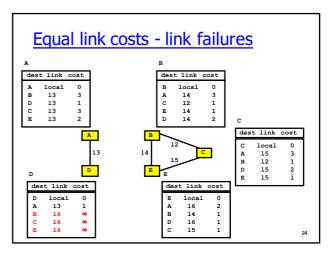


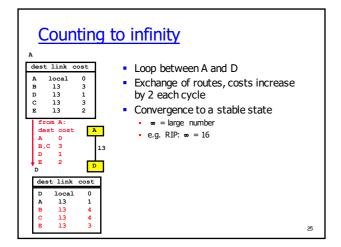

Distance vector example Simple network routers connected by links destinations = subnetworks connected to routers symmetric links cost = number of hops

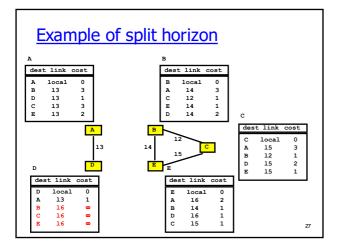


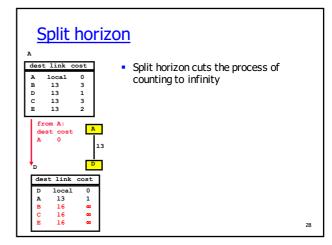


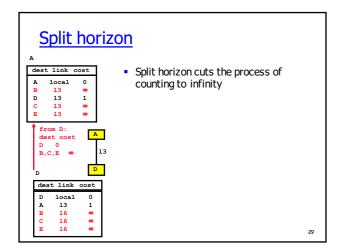


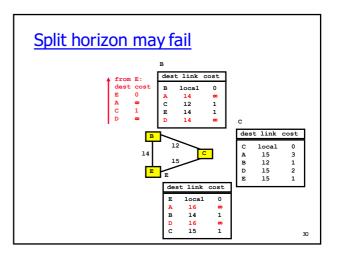


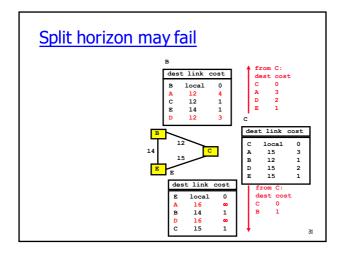


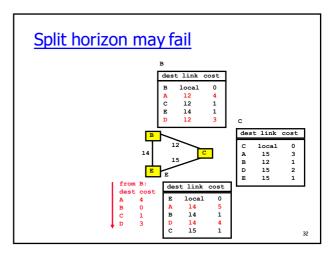


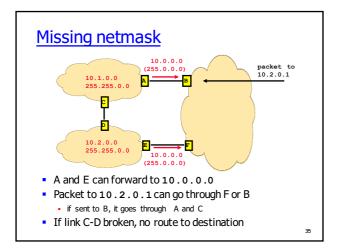



Split horizon

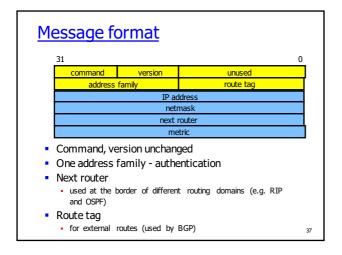

- Minimize the effects of bouncing and counting to infinity
- Rule
 - if A routes packets to X via B, it does not announce this route to B

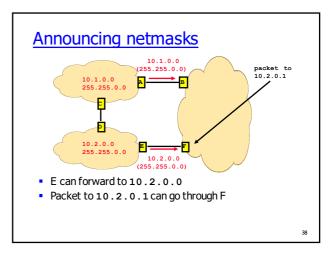

26

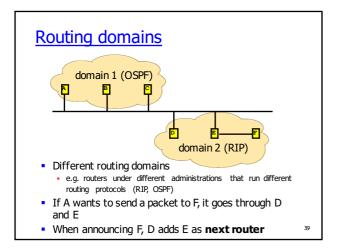


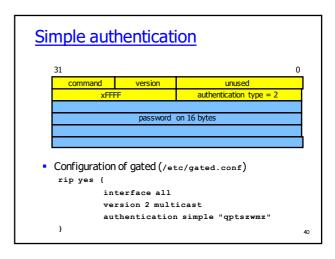


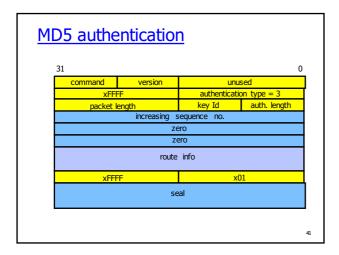
RIP v1


- Distance vector protocol
- Metric hops
- Network span limited to 15
 - **• • • =** 16
- Split horizon
- Destination network identified by IP address
 - no prefix/subnet information derived from address class
- Encapsulated as UDP packets, port 520
- Largely implemented (routed on Unix)
- Broadcast every 30 seconds or when update detected
- Route not announced during 3 minutes
 - cost becomes ∞


33

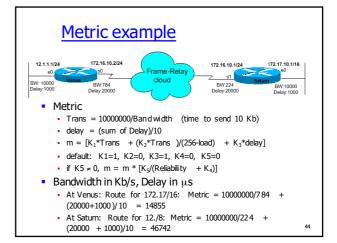

Message format 31 0 | command | version | zero | | address family | zero | | IP address | | zero | | zero | | metric | May be repeated 25 times • Command • REQUEST - 1 (sent at boot to initialize) • RESPONSE - 2 (broadcast each 30 sec)




PRIP v2 (RFC 2453) Subnetworks take into account CIDR prefixes and netmasks Authentication Multicast 224.0.0.9 mapped to MAC 01-00-5E-00-00-09 on LAN only, no need for IGMP


```
    MD5 authentication
    Seal

            MD5 digest on the message using a shared secret
            sequence number avoids replay attacks


    Configuration of gated (/etc/gated.conf)

            rip yes {
                  interface all
                  version 2 multicast
                  authentication md5 "qptszwmz"
                  }
```

IGRP (Interior Gateway Routing Protocol)

- Proprietary protocol by CISCO
- Metric that estimates the global delay
- Maintains several routes of similar cost
 - load sharing
- Takes into account netmasks
- No limit of 15
 - number of routers included in messages
- Broadcast every 90 sec

43

Conclusion

- Main distance vector protocols
- Largely deployed (Unix BSD routed)
- Simplicity
- Slow convergence
- Not suited for large and complex networks
 - Link State protocols should be used instead

45