Networking Trends and Their Impact

Raj Jain The Ohio State University Columbus, OH 43210 Jain@CIS.Ohio-State.Edu

These Slides are available on-line at

http://www.cis.ohio-state.edu/~jain/cis788-99/ The Ohio State University Raj Jain
1

Trends: Networking Bottleneck

- Communication is more critical than computing
 - Greeting cards contain more computing power than all computers before 1950.
 - Genesis's game has more processing than 1976 Cray supercomputer.
- Networking speed is the key to productivity
- □ E-Commerce ⇒ 20-30% of revenue spent on networking
- □ High bandwidth \Rightarrow More bits per second Hundreds of telegrams per day \Rightarrow Fast pace of life The Ohio State University The Ohio State University

Impact on R&D

- ❑ Too much growth in one year
 ⇒ Can't plan too much into long term
- □ Long term = 1_2 year or 10_2 years at most
- □ Products have life span of 1 year, 1 month, ...
- Short product development cycles. Chrysler reduced new car design time from 6 years to 2.
- Distance between research and products has narrowed
 - \Rightarrow Collaboration between researchers and developers

6

 \Rightarrow Academics need to participate in industry consortia

The Ohio State University

Trend: Information Glut

- \Box Web \Rightarrow Information production and dissemination costs are almost zero
 - \Rightarrow Too much information
 - = Needles in the haystack
- □ Thousands of hits on each search
- □ Need tools for summarizing the information
- Opportunities for artificial intelligence
- □ Need to express information so that both human and computers can understand

10

The Ohio State University

The Ohio State University

Raj Jain

Networking Trends □ Faster Media □ More Traffic \Box Traffic > Capacity □ ATM in Backbone □ Everything over IP **Traffic Engineering** □ All-layer Routing Raj Jain

5

Trend: Faster Media One Gbps over 4-pair UTP-5 up to 100 m 10G being discussed. Was 1 Mbps (1Base-5) in 1984. Dense Wavelength Division Multiplexing (DWDM) 64×OC-192 = 0.6 Tbps OC-768 = 40 Gbps over a 1λ to 65 km [Alcatel98] 400 Gbps using 80λ products.

- Was 100 Mbps (FDDI) in 1993.
- 11 Mbps in-building wireless networks Was 1 Mbps (IEEE 802.11) in 1998.
 2.5 Gbps to 5km using light in open air

13

Trend: Traffic > Capacity	
Expensive Bandwidth	Cheap Bandwidth
Sharing	No sharing
Multicast	Private Networks
Virtual Private Networks	QoS less of an issue
Need QoS	Possible in LANs
Likely in WANs	
The Ohio State University	Raj Jain

Trend: ATM in Backbone

- Most carriers including AT&T, MCI, Sprint, UUNET, have ATM backbone
- Over 80% of the internet traffic goes over ATM
- □ ATM provides:
 - Traffic management
 - Voice + Data Integration: CBR, VBR, ABR, UBR
 - Signaling
 - Quality of service routing: PNNI

 ATM can't reach desktop: Designed by carriers. Complexity in the end systems. Design favors voice.
 The Ohio State University
 Raj Jain

17

Trend: Everything over IP

- □ Data over IP \Rightarrow IP needs Traffic engineering
- $\Box \text{ Voice over IP} \Rightarrow \text{Quality of Service and Signaling}$
- □ Internet Engineering Task Force (IETF) is the center of action.

19

Attendance at ATM Forum and ITU is down.

Trend: All-Layer Routing

- Old: All packets followed the same path, stood in the same FIFO queue. Path based on Destination IP Address.
- New: Buffering, Queueing, Scheduling, and path based on Destination IP address, Source IP address, TCP Ports, Type of Service, ...

21

The Ohio State University

